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Dynamic neural networks for control

The controlled nonlinear plant is given as:

�
x = f (x , t) + u, x 2 <n, u 2 <n

f is unknown.
The objective of control is to force the nonlinear system following a
optimal trajectory xd 2 <r , which is generated by

ẋd = ϕ (x , t)

The tracking error is
∆c = x � xd
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Neural control

NN model .
x̂ = Ax̂ +W1σ(x) + u
.
x = Ax +W �

1 σ(x) + u � f̃
Identi�cation error

∆i = x̂ � x
The error dynamic is

∆̇i = A∆i + W̃1σ(x) + f̃

We assume modeling error is bounded

f̃Λ�1
f f̃ � η
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Neural control

The nonlinear system can be also rewritten as

.
x = Ax +W �

1 σ(x) + u � ef
or

�
x = Ax +W1σ(x) + u � dt

Becasue
ẋd = ϕ (x , t)

The tracking error dynamic is

∆̇c = Ax +W1σ(x) + u � dt � ϕ (x , t)

where
dt = ef + W̃1σ(x)

where the identi�cation dt is bounded as d = sup
t
kdtk .
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Neural control with RNN

From the tracking error dynamic

∆̇c = Ax +W1σ(x) + u � dt � ϕ (x , t)

Let us select the control action u as

u = u1 + u2

here u1 is direct controller, u2 is a compensator of unmodeled dynamic dt

u1 = ϕ (x , t)� Axd �W1σ(x)

and
∆̇c = A∆c + u2 + dt
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Sliding Mode Compensation

De�ne Lyapunov-like function as

V = ∆Tc P∆c

time derivative alone ∆̇c = A∆c + u2 + dt ,

�
V = ∆Tc

�
ATP + PA

�
∆c + 2∆Tc Pu2 + 2∆Tc Pdt

Because
∆Tc

�
ATP + PA

�
∆c = �∆Tc Q∆c = �k∆ck2Q

2∆Tc Pdt � 2λmax (P) k∆ck kdtk
�
V � �k∆ck2Q + 2λmax (P) k∆ck kdtk+ 2∆Tc Pu2
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Sliding Mode Compensation

We need u2
2∆Tc Pu2 � �K k∆ck

Because if
∆c sgn(∆c ) = k∆ck

If the control u2 has the form of

u2 = �Ksgn(∆c ), K > 0

then
2∆Tc Pu2 = �2∆Tc PKsgn(∆c ) � �2λmin (P)K k∆ck

So �
V � �k∆ck2Q � 2 k∆ck (λmin (P)K � λmax (P) kdtk)
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Sliding Mode Compensation

If we select

K >
λmax (P)
λmin (P)

d (1)

then �
V � �k∆ck2Q � 0

With LaSalle lemma,
lim
t!∞

∆c = 0
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Exactly Compensation

Since �
x = Axt +W1σ(x) + u � dt
.
x̂ = Ax̂ +W1σ(x) + u

Then

dt =
�
�
x �

�bx t�� A (x � x̂)
If

�
x = f (x , , t) + u

is available, we can select u2 as

u2 = A (x � x̂)
� [f (x , , t) + u � (Ax̂ +W1σ(x) + u)]

So,
∆̇c = A∆c lim

t!∞
∆c = 0.
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Approximate Compensation

If
�
x = f (x , , t) + u is not available

�
x =

xt � xt�τ

τ
+ δ

where δ > 0, is the di¤erential approximation error. Let us select the
compensator as

u2 = A (x � x̂)�
�
xt � xt�τ

τ
�

�
x̂
�

So
∆̇c = A∆c + δ
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Approximate Compensation

De�ne Lyapunov-like function as

V = ∆Tc P∆c

The time derivative is
�
V = ∆Tc

�
ATP + PA

�
∆c + 2∆Tc Pδ

2∆Tt P2δt can be estimated as

2∆Tc Pδ � ∆Tc PΛP∆c + δTΛ�1δ

So �
V � ∆Tc

�
ATP + PA+ PΛP

�
∆c + δTΛ�1δ

� �∆Tc Q∆c + δ̄

Then
lim k∆ckQ ! δ̄

(CINVESTAV-IPN) Intelligent Control October 30, 2024 11 / 40



Local Optimal Control

Because
V = ∆Tc P∆c

time derivative alone ∆̇c = A∆c + u2 + dt ,

�
V = ∆Tc

�
ATP + PA

�
∆c + 2∆Tc Pu2 + 2∆Tc Pdt

2∆Tc Pdt can be estimated as

2∆Tc Pdt � ∆Tc PΛP∆c + dTt Λ�1dt

Because A is stable, with the matrix Riccati equation

ATP + PA+ PΛP +Q = 0 (2)

has solution.
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Local Optimal Control

So �
V = ∆Tc

�
ATP + PA

�
∆c + 2∆Tc Pu2 + 2∆Tc Pdt

� �k∆k2Q � uT2 Ru2 + uT2 Ru2 + 2∆Tc Pu2 + dTt Λ�1dt
= �

�
k∆k2Q + ku2k

2
R

�
+ ku2k2R + 2∆Tc Pu2 + dTt Λ�1dt

We de�ne
Ψ (u2) = ku2k2R + 2∆Tc Pu2

then
k∆k2Q + ku2k

2
R � Ψ (u2) + dTt Λ�1dt �

�
V
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Local Optimal Control

Integrating each term from 0 to T , dividing each term by T , and taking
the limit, for T ! ∞

limT!∞
1
T

R T
0 k∆k2Q dt + limT!∞

1
T

R T
0 ku2k

2
R dt

� limT!∞
1
T

R T
0 Ψ (u2) dt +

�
limT!∞

1
T

R T
0 d

T
t Λ�1dtdt � limT!∞

R T
0 V̇ dt

�
� limT!∞

1
T

R T
0 Ψ (u2) dt + limT!∞

1
T V0

so
min

�
k∆k2Q + ku2k

2
R

�
! minΨ

�
ud2
�
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Neural control: Local Optimal Control

The local optimal control is,�
minΨ (u2) = ku2k2R + 2∆Tc Pu2

subject:A0u � B0

where A0 and B0 are some unknow matrices.

Ψ (u2) = ku2k2R + 2∆Tc Pu2

It is typical quadratic programming problem.
Without restriction of A0 and B0, u2 is selected according to the linear
squares optimal control law

u2 = �R�1P∆c

where Riccati equation

ATP + PA+ PΛP +Q = 0 (3)
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Discret-time

relative-degree-one system,

y(k) = f [X (k)] + g [X (k)] u(k)
X (k) = [y (k � 1) , � � � y (k � n) , u (k � 1) , � � � u (k �m)]

where f [�] and g [�] are smooth functions, g [�] is bounded away from zero.
In state space form

xi (k + 1) = xi+1 (k) , i = 1 � � � n� 1
xn (k + 1) = f [x (k)] + g [x (k)] u (k)

where x (k) = [x1 � � � xn+m ]T ,

xi (k) = y (k � n+ i � 1) , i = 1 � � � n
xi+n (k) = u (k �m+ i � 1) , i = 1 � � �m

g [x (k)] is nonzero. Assume g [x (k)] � g > 0, g is known positive
constant.
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Discret-time control

The treacking error is de�ned as

en�i (k) = xn�i (k)� xdn�i (k) , i = 0 � � � n� 1

A �ltered tracking error is

r(k) = en(k) + λ1en�1(k) + � � �+ λn�1e1(k)

where λ1 � � � λn�1 are constant selected so that�
zn�1 + λ1zn�2 + � � �+ λn�1

�
is stable.

The dynamic of tracking error is

r(k + 1) = en(k + 1) + λ1en(k) + � � �+ λn�1e2 (k)
= f [x (k)] + g [x (k)] u (k)� xdn (k + 1)
+λ1en(k) + � � �+ λn�1e2 (k)
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Discret-time control

Ideal state feedback control is

u (k) =
1

g [x (k)]

h
xdn (k + 1)� f [x (k)] + kv r (k)� λ1en(k)� � � � � λn�1e2 (k)

i
(4)

where jkv j < 1.
The closed-loop system is

r (k + 1) = kv r(k)

In matrix form
E (k + 1) = AE (k) + Br(k)

where E (k) = [e1 (k) � � � en�1 (k)] , A =

24 0 1 0

�λn�1 � � � �λ1

35 ,
B = [0 � � � 01]T . Becasue A is stable, r(k) is asymptotical stable.
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Discret-time control

If f [x (k)] and g [x (k)] are unknown,

bf [x (k)] = W1φ1 [x (k)]bg [x (k)] = W2φ2 [x (k)]

and

f [x (k)] = W �
1 φ1 [x (k)] + ef1 = W1φ1 [x (k)] + ef

g [x (k)] u (k) = W �
2 φ2 [x (k)] u (k) + eg1 = W2φ2 [x (k)] + eg

The dynamic of tracking error is

r(k + 1) = W �
1 φ1 [x (k)] +W

�
2 φ2 [x (k)] u (k)

�xdn (k + 1) + λ1en(k) + � � �+ λn�1e2 (k) + d (k)

where d (k) = ef + eg .
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Discret-time control

Then NN based control is

u (k) = [W2,kφ2]
+ fxdn (k + 1)�W1,kφ1 [x (k)]

+kv r (x)� λ1en(k)� � � � � λn�1e2 (k)g

where [�]+ stands for the pseudoinverse in Moor-Penrose sense,

x+ =
xT

kxk2
, 0+ = 0

The closed-loop system is

r(k + 1) = W1φ1 [x (k)] +W2φ2 [x (k)] u (k)
�xdn (k + 1) + λ1en(k) + � � �+ λn�1e2 (k) + d (k)
= kv r(k) + d1 (k)

where fW1,k = W1,k �W �
1 , fW2,k = W2,k �W �

2 , d1 (k) is bounded
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Discret-time control

Theorem
The following gradient updating law can make tracking error r (k)
bounded (stable in an L∞ sense)

W1,k+1 = W1,k � ηk r (k) φT1 [x (k)]
W2,k+1 = W2,k � ηk r (k) φT2 [x (k)] u (k)

where ηk satis�es

ηk =

8<:
η

1+ kφ1k
2 + kφ2uk

2 if β kr (k + 1)k � kr (k)k

0 if β kr (k + 1)k � kr (k)k

here 1 � η > 0, 1
1+kV

� β � 1.
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Proof

We select Lyapunov function as

Lk =



fW1,k




2 + 


fW2,k




2 (5)

where



fW1,k




2 = ∑n
i=1 ew21,k ,i = tr nfW T

1,k
fW1,k

o
. From the updating law

fW1,k+1 = fW1,k � ηk r (k) φT [x (k)]
∆Lk = Lk+1 � Lk
=



fW1,k � ηk r (k) φT1 [x (k)]




2 � 


fW1,k




2
+



fW2,k � ηk r (k) φT2 [x (k)] u (k)




2 � 


fW2,k




2
= η2k r

2 (k) kφ1k
2 + η2k r

2 (k) kφ2uk
2

�2ηk




r (k) φT1
fW1,k




� 2ηk




r (k) φT2
fW2,ku (k)
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Proof

Using
�2ηk




r (k) φT1
fW1,k




� 2ηk




r (k) φT2
fW2,ku (k)





= �2ηk kr (k)k

�


φT1
fW1,k




+ 


φT2 u (k)fW2,k




�
� �2ηk kr (k)k




φT1
fW1,k + φT2

fW2,ku (k)





= �2ηk kr (k)k kr (k + 1)� kv r(k)�ω1 (k)k
= �2ηk



r (k) r (k + 1)� kv r2(k)� r (k)ω1 (k)
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Proof

� if β kr (k + 1)k � kr (k)k

�2ηk




r (k) φT1
fW1,k




� 2ηk




r (k) φT2
fW2,ku (k)





� � 2ηk

β kr (k)k2 + 2ηkkv kr (k)k
2 + ηk kr (k)k

2 + ηk kω1 (k)k2

Using 0 < η � 1, 0 � ηk � η � 1, ηk =
η

1+ kφ1k
2 + kφ2uk

2
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Proof

∆Lk = η2k r
2 (k)

�
kφ1k

2 + kφ2uk
2
�

� 2ηk
β r (k)

2 + 2ηkkv r (k)
2 + ηk r (k)

2 + ηkω2
1 (k)

= �ηk

264
�
2
β � 2kv � 1

�
�η

kφ1k
2 + kφ2uk

2

1+ kφ1k
2 + kφ2uk

2

375 r2 (k) + ηkω2
1 (k)

� �πr2 (k) + ηω2
1 (k)

(6)

where π =
η

1+ κ

��
2ηk

β � 2kv � 1
�
� κ

1+ κ

�
,

κ = max
k

�
kφ1k

2 + kφ2uk
2
�
.
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Proof

Since 1
1+kV

� β � 1,
�
2
β � 2kv � 1

�
> 1, π > 0

nmin
�ew2i � � Vk � nmax �ew2i �

where n�min
�ew2i � and n�max �ew2i � are K∞-functions, and πe2 (k) is

an K∞-function, ηζ2 (k) is a K-function. From (??) and (5) we know Vk
is the function of e (k) and ζ (k) , so Vk admits the smooth ISS-Lyapunov
function as in De�nition 2. From Theorem 1, the dynamic of the
identi�cation error is input-to-state stable. The �INPUT� is corresponded
to the second term of the last line in (6), i.e., the modeling error
ζ (k) = ε (k) + µ (k) , the �STATE� is corresponded to the �rst term of
the last line in (6), i.e., the identi�cation error e (k) . Because the
�INPUT� ζ (k) is bounded and the dynamic is ISS, the �STATE� e (k) is
bounded.
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Proof

If β kr (k + 1)k < kr (k)k , ∆Lk = 0. Lk is constant, W1,k , W2,k are the
constants. Since kr (k + 1)k < 1

β kr (k)k ,
1
β < 1, r (k) is bounded.
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MLP

Now, we consider multilayer neural network(or multilayer perceptrons.
MLP) bf [x (k)] = W1,kφ1 [V1,kx (k)]bg [x (k)] = W2,kφ2 [V2,kx (k)]

(7)

where the weights in output layer are V1,k ,V2,k 2 Rm�n, the weights in
hidden layer are W1,k ,W2,k 2 R1�m . m is the dimension of the hidden
layer, n is the dimension of the state. The feedback control is Then the
control u(k) can be de�ned as the following

u (k) = [W2,kφ2 (V2,kx (k))]
+

[x�n (k + 1)�W1,kφ1 (V1,kx (k)) + kv r (x)� λ1en(k)� � � � � λn�1e2 (k)]
(8)
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MLP

The closed-loop system becomes

r (k + 1) = kv r(k) + ef + egu (k) (9)

Similar as (??)

ef = W �
1 φ1 [V

�
1 x (k)]�W1,kφ1 [V1,kx (k)]� ef1egu (k) = W �

2 φ2 [V
�
2 x (k)] u (k)�W2,kφ2 [V2,kx (k)] u (k)� eg1

In the case of two independent variables, a smooth function f has Taylor
formula as

f (x1, x2) =
l�1
∑
k=0

1
k !

��
x1 � x01

� ∂

∂x1
+
�
x2 � x02

� ∂

∂x2

�k
0
f + Rl
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MLP

The closed-loop system is

r (k + 1) = kv r(k)+ω2 (k)+fW1,kφ1+W1,kφ
0
1
eV1,kx+fW2,kφ2u+W2,kφ

0
2
eV2,kxu

(10)
where ω2 (k) = ef1 + eg1 + R1 + R2, kω2 (k)k2 � ω2.
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MLP

Theorem
If we use neuro adaptive control (8) to control nonlinear plant (??), the
following updating law can make tracking error r (k) bounded (stable in
an L∞ sense)

W1,k+1 = W1,k � ηk r (k) φT1 ,

V1,k+1 = V1,k � ηk r (k) r (k) φ
0
1W

T
1,kx

T (k)
W2,k+1 = W2,k � ηk r (k) uφT1 ,

V2,k+1 = V2,k � ηk r (k) uφ
0
1W

T
2,kx

T

(11)

where ηk satis�es

ηk =

8>>><>>>:
η

kφ1k
2 + kφ2uk

2

+



φ

0
1W

T
1,kx

T



+ 


uφ

0
2W

T
2,kx

T





if β kr (k + 1)k � kr (k)k

0 if β kr (k + 1)k < kr (k)k

here 1 � η > 0, 1
1+kV

� β � 1.
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MLP

The average of the identi�cation error satis�es

J = lim sup
T!∞

1
T

T

∑
k=1

r2 (k) � η

π
ω2 (12)

where π =
η

1+ κ

�
1� κ

1+ κ

�
> 0,

κ = max
k

�
kφ1k

2 + kφ2uk
2 +




φ
0
1W

T
1,kx

T



+ 


φ

0
2W

T
2,kx

T u



�

ω2 = max
k

�
ω2
2 (k)

�
.
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Recurrent neural networks

The control goal is to force the system states x (k) to track a linear
reference model given by

xd (k + 1) = F
h
xd (k)

i
(13)

The model based trajectory error is

∆ (k) = x̂ (k)� xd (k)

The real tracking error is

∆d (k) = x (k)� xd (k)

The control object is

Jmin = min
u(k )

J, J =



x (k)� xd (k)


2
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Recurrent neural networks for control

For any η > 0,

J � (1+ η) kx (k)� x̂ (k)k2 +
�
1+ η�1

� 


x̂ (k)� xd (k)


2 (14)

The minimum of the term kx (k)� x̂ (k)k2 has already been solved
in modeling.

Now we can reformulate the control goal to minimize the term

x̂ (k)� xd (k)

2. We note that


∆d (k)



 � k∆ (k)k
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Recurrent neural networks for control

For simple case
x (k + 1) = f [x (k)] + u (k) (15)

NN
x̂(k + 1) = Ax̂ (k) +W1φ [x (k)] + u (k) (16)

Reference
xd (k + 1) = F

h
xd (k)

i
Error dynamic is

∆ (k) = x̂ (k)� xd (k)
∆ (k + 1) = Ax̂ (k)� Axd (k) + Axd (k) +W1φ [x (k)] + u (k)� F

�
xd (k)

�
= A∆ (k) + Axd (k) +W1φ [x (k)] + u (k)� F

�
xd (k)

�
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Recurrent neural networks for control

If
u = Axd (k) +W1φ [x (k)]� F

h
xd (k)

i
then

∆ (k + 1) = A∆ (k)

∆ (k)! 0

x̂ (k)! xd (k)

But The real tracking error is 


∆d (k)



! ξ̄

ξ̄ is upper bound of NN modeling error
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Recurrent neural networks for control

The unknown nonline system is

x (k + 1) = f [x (k)] + u (k) (17)

NN is
x̂(k + 1) = Ax̂ (k) +W1φ [x (k)] + u (k) (18)

The unknown nonlinear system can be represented as

x (k + 1) = Ax (k) +W �
1 φ [x (k)] + u (k) + d

The control goal is to force the system states x (k) to track a linear
reference model given by

xd (k + 1) = F
h
xd (k)

i
(19)

(CINVESTAV-IPN) Intelligent Control October 30, 2024 37 / 40



Recurrent neural networks for control

The real tracking error is

∆d (k) = x (k)� xd (k)

The error dynamic ic

∆ (k + 1) = Ax (k) +W1φ [x (k)] + u (k) + d � F
h
xd (k)

i
∆d (k + 1) = A∆d (k) + Axd (k) +W1φ [x (k)] + u (k)� F

h
xd (k)

i
+ d

If
�u1 = Axd (k) +W1φ [x (k)]� F

h
xd (k)

i
then

∆d (k + 1) = A∆d (k) + u2 + d
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Sliding Mode Compensation

u2 = �Ksgn
h
∆d (k)

i
, K > 0
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Local Optimal Control

Without restriction of A0 and B0, u2is selected according to the linear
squares optimal control law

u2 = �R�1Pk∆d (k)

Pk is the solution of Riccati equation

Pk+1 = (A�Kk )>Pk (A�Kk ) +Q +K>k RKk
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