Neural Control 2

Wen Yu

Departamento de Control Automático CINVESTAV-IPN A.P. 14-740, Av.IPN 2508, MÈxico D.F., 07360, MÈxico

4 0 8

(CINVESTAV-IPN) [Intelligent Control](#page-39-0) October 30, 2024 1 / 40

 QQQ

The controlled nonlinear plant is given as:

$$
\dot{x}=f(x,t)+u,\quad x\in\Re^n,\ u\in\Re^n
$$

f is unknown.

The objective of control is to force the nonlinear system following a optimal trajectory $x^d \in \Re^r$, which is generated by

$$
\dot{x}^d = \varphi\left(x, t\right)
$$

The tracking error is

$$
\Delta_c = x - x^d
$$

NN model

$$
\dot{\hat{x}} = A\hat{x} + W_1\sigma(x) + u
$$

$$
\dot{x} = Ax + W_1^*\sigma(x) + u - \tilde{f}
$$

Identification error

$$
\Delta_i = \hat{x} - x
$$

The error dynamic is

$$
\dot{\Delta}_i = A\Delta_i + \tilde{W}_1 \sigma(x) + \tilde{f}
$$

We assume modeling error is bounded

$$
\tilde{f}\Lambda_f^{-1}\tilde{f}\leq \overline{\eta}
$$

4 D F

 \rightarrow

Neural control

The nonlinear system can be also rewritten as

$$
\dot{x} = Ax + W_1^* \sigma(x) + u - \widetilde{f}
$$

or

$$
x = Ax + W_1 \sigma(x) + u - d_t
$$

Becasue

$$
\dot{x}^d = \varphi(x, t)
$$

The tracking error dynamic is

$$
\dot{\Delta}_c = Ax + W_1 \sigma(x) + u - d_t - \varphi(x, t)
$$

where

$$
d_t = \widetilde{f} + \widetilde{W}_1 \sigma(x)
$$

where the identification d_t is bounded as $\overline{d} = \sup_t \Vert d_t \Vert$. [t](#page-2-0)

不自主

From the tracking error dynamic

$$
\dot{\Delta}_c = Ax + W_1 \sigma(x) + u - d_t - \varphi(x, t)
$$

Let us select the control action μ as

 $u = u_1 + u_2$

here u_1 is direct controller, u_2 is a compensator of unmodeled dynamic d_t

$$
u_1 = \varphi(x, t) - Ax^d - W_1 \sigma(x)
$$

and

$$
\dot{\Delta}_c = A\Delta_c + u_2 + d_t
$$

Define Lyapunov-like function as

$$
V = \Delta_c^T P \Delta_c
$$

time derivative alone $\dot{\Delta}_c = A \Delta_c + u_2 + d_t,$

$$
V = \Delta_c^T \left(A^T P + P A \right) \Delta_c + 2 \Delta_c^T P u_2 + 2 \Delta_c^T P d_t
$$

Because

$$
\Delta_c^T (A^T P + P A) \Delta_c = -\Delta_c^T Q \Delta_c = - ||\Delta_c||_Q^2
$$

\n
$$
2\Delta_c^T P d_t \le 2\lambda_{\text{max}} (P) ||\Delta_c|| ||d_t||
$$

\n
$$
V \le - ||\Delta_c||_Q^2 + 2\lambda_{\text{max}} (P) ||\Delta_c|| ||d_t|| + 2\Delta_c^T P u_2
$$

4 0 8

We need u_2

$$
2\Delta_c^T P u_2 \leq -K \left\|\Delta_c\right\|
$$

Because if

$$
\Delta_c sgn(\Delta_c) = \|\Delta_c\|
$$

If the control u_2 has the form of

$$
u_2=-Ksgn(\Delta_c),\quad K>0
$$

then

$$
2\Delta_c^T P u_2 = -2\Delta_c^T P K sgn(\Delta_c) \leq -2\lambda_{\min}(P) K ||\Delta_c||
$$

So

$$
V \leq -\left\|\Delta_{c}\right\|_{Q}^{2} - 2\left\|\Delta_{c}\right\|(\lambda_{\min}\left(P\right)K - \lambda_{\max}\left(P\right)\left\|d_{t}\right\|)
$$

4 D F

 \leftarrow \leftarrow \leftarrow

э

If we select

$$
K > \frac{\lambda_{\max}\left(P\right)}{\lambda_{\min}\left(P\right)}\overline{d}
$$

 (1)

then

$$
V\leq -\left\|\Delta_c\right\|_Q^2\leq 0
$$

With LaSalle lemma,

$$
\lim_{t\to\infty}\Delta_c=0
$$

4 0 8

 \rightarrow

Þ

Exactly Compensation

Since

$$
\dot{x} = Ax_t + W_1 \sigma(x) + u - d_t
$$

$$
\dot{\hat{x}} = A\hat{x} + W_1 \sigma(x) + u
$$

Then

$$
d_t = \left(\dot{x} - \dot{\widehat{x}}_t\right) - A\left(x - \hat{x}\right)
$$

If

$$
\dot{x}=f(x, t)+u
$$

is available, we can select u_2 as

$$
u_2 = A(x - \hat{x})
$$

- [f(x, , t) + u - (A\hat{x} + W_1\sigma(x) + u)]

So,

$$
\dot{\Delta}_c = A\Delta_c \quad \lim_{t \to \infty} \Delta_c = 0.
$$

4 0 8

 \leftarrow \leftarrow \leftarrow

э

If $\stackrel{\text{\scriptsize{x}}}{=} f(x,\,,t) + u$ is not available

$$
\dot{x} = \frac{x_t - x_{t-\tau}}{\tau} + \delta
$$

where $\delta > 0$, is the differential approximation error. Let us select the compensator as

$$
u_2 = A(x - \hat{x}) - \left(\frac{x_t - x_{t-\tau}}{\tau} - \hat{x}\right)
$$

So

$$
\dot{\Delta}_c = A\Delta_c + \delta
$$

4 0 8

Approximate Compensation

Define Lyapunov-like function as

$$
V=\Delta_c^TP\Delta_c
$$

The time derivative is

$$
V = \Delta_c^T \left(A^T P + P A \right) \Delta_c + 2 \Delta_c^T P \delta
$$

 $2\Delta_t^{\mathcal T} P_2\delta_t$ can be estimated as

$$
2\Delta_c^T P \delta \leq \Delta_c^T P \Lambda P \Delta_c + \delta^T \Lambda^{-1} \delta
$$

So

$$
\dot{V} \leq \Delta_c^T \left(A^T P + PA + P\Lambda P \right) \Delta_c + \delta^T \Lambda^{-1} \delta \\ \leq -\Delta_c^T Q \Delta_c + \bar{\delta}
$$

Then

$$
\lim \|\Delta_c\|_Q \to \bar \delta
$$

4 0 8

Local Optimal Control

Because

$$
V=\Delta_c^TP\Delta_c
$$

time derivative alone $\dot{\Delta}_c = A \Delta_c + u_2 + d_t,$

$$
V = \Delta_c^T \left(A^T P + P A \right) \Delta_c + 2 \Delta_c^T P u_2 + 2 \Delta_c^T P d_t
$$

 $2\Delta_c^T Pd_t$ can be estimated as

$$
2\Delta_c^T P d_t \leq \Delta_c^T P \Lambda P \Delta_c + d_t^T \Lambda^{-1} d_t
$$

Because A is stable, with the matrix Riccati equation

$$
A^T P + P A + P \Lambda P + Q = 0 \tag{2}
$$

has solution.

So

$$
V = \Delta_c^T (A^T P + P A) \Delta_c + 2\Delta_c^T P u_2 + 2\Delta_c^T P d_t
$$

\n
$$
\leq - \|\Delta\|_Q^2 - u_2^T R u_2 + u_2^T R u_2 + 2\Delta_c^T P u_2 + d_t^T \Lambda^{-1} d_t
$$

\n
$$
= - (\|\Delta\|_Q^2 + \|u_2\|_R^2) + \|u_2\|_R^2 + 2\Delta_c^T P u_2 + d_t^T \Lambda^{-1} d_t
$$

We define

$$
\Psi (u_2) = ||u_2||_R^2 + 2\Delta_c^T P u_2
$$

then

$$
\|\Delta\|_{Q}^{2} + \|u_{2}\|_{R}^{2} \leq \Psi\left(u_{2}\right) + d_{t}^{T}\Lambda^{-1}d_{t} - V
$$

重

∍ × -4

K ロ ト K 伊 ト K

重

Integrating each term from 0 to T , dividing each term by T , and taking the limit, for $T \rightarrow \infty$

$$
\begin{aligned}\n\lim_{T \to \infty} \frac{1}{T} \int_0^T \|\Delta\|_{Q}^2 dt + \lim_{T \to \infty} \frac{1}{T} \int_0^T \|u_2\|_{R}^2 dt \\
&\leq \lim_{T \to \infty} \frac{1}{T} \int_0^T \Psi(u_2) dt + \left(\lim_{T \to \infty} \frac{1}{T} \int_0^T d_t^T \Lambda^{-1} d_t dt - \lim_{T \to \infty} \int_0^T \dot{V} dt\right) \\
&\leq \lim_{T \to \infty} \frac{1}{T} \int_0^T \Psi(u_2) dt + \lim_{T \to \infty} \frac{1}{T} V_0\n\end{aligned}
$$

so

$$
\min\left(\|\Delta\|_{Q}^{2}+\|u_{2}\|_{R}^{2}\right)\rightarrow\min\Psi\left(u_{2}^{d}\right)
$$

4 0 8

 QQ

Neural control: Local Optimal Control

The local optimal control is,

$$
\begin{cases}\n\min \Psi\left(u_{2}\right) = \|u_{2}\|_{R}^{2} + 2\Delta_{c}^{T}Pu_{2} \\
\text{subject:} A_{0}u \leq B_{0}\n\end{cases}
$$

where A_0 and B_0 are some unknow matrices.

$$
\Psi (u_2) = ||u_2||_R^2 + 2\Delta_c^T P u_2
$$

It is typical quadratic programming problem. Without restriction of A_0 and B_0 , u_2 is selected according to the linear squares optimal control law

$$
u_2=-R^{-1}P\Delta_c
$$

where Riccati equation

$$
A^T P + P A + P \Lambda P + Q = 0 \tag{3}
$$

Discret-time

relative-degree-one system,

$$
y(k) = f[X(k)] + g[X(k)]u(k)
$$

$$
X(k) = [y(k-1), \dots y(k-n), u(k-1), \dots u(k-m)]
$$

where f $\lceil \cdot \rceil$ and $g \lceil \cdot \rceil$ are smooth functions, $g \lceil \cdot \rceil$ is bounded away from zero. In state space form

$$
x_i (k + 1) = x_{i+1} (k), i = 1 \cdots n - 1
$$

$$
x_n (k + 1) = f [x (k)] + g [x (k)] u (k)
$$

where $x(k) = [x_1 \cdots x_{n+m}]^T$,

$$
x_i(k) = y(k-n+i-1), i = 1 \cdots n x_{i+n}(k) = u(k-m+i-1), i = 1 \cdots m
$$

 $g [x (k)]$ is nonzero. Assume $g [x (k)] \ge \overline{g} > 0$, \overline{g} is known positive constant.

The treacking error is defined as

$$
e_{n-i}(k) = x_{n-i}(k) - x_{n-i}^d(k), \quad i = 0 \cdots n-1
$$

A filtered tracking error is

$$
r(k) = e_n(k) + \lambda_1 e_{n-1}(k) + \cdots + \lambda_{n-1} e_1(k)
$$

where $\lambda_1 \cdots \lambda_{n-1}$ are constant selected so that $\left(z^{n-1} + \lambda_1 z^{n-2} + \cdots + \lambda_{n-1} \right)$ is stable. The dynamic of tracking error is

$$
r(k + 1) = e_n(k + 1) + \lambda_1 e_n(k) + \cdots + \lambda_{n-1} e_2(k)
$$

= $f[x(k)] + g[x(k)] u(k) - x_n^d (k + 1)$
+ $\lambda_1 e_n(k) + \cdots + \lambda_{n-1} e_2(k)$

つひひ

Ideal state feedback control is

$$
u(k) = \frac{1}{g\left[x(k)\right]} \left[x_n^d\left(k+1\right) - f\left[x(k)\right] + k_v r\left(k\right) - \lambda_1 e_n(k) - \dots - \lambda_{n-1} e_n(k)
$$
\n(4)

where $|k_v| < 1$. The closed-loop system is

$$
r(k+1)=k_v r(k)
$$

In matrix form

$$
E(k + 1) = AE(k) + Br(k)
$$
\nwhere $E(k) = [e_1(k) \cdots e_{n-1}(k)]$, $A = \begin{bmatrix} 0 & 1 & 0 \\ -\lambda_{n-1} & \cdots & -\lambda_1 \end{bmatrix}$,
\n $B = [0 \cdots 01]^T$. Because A is stable, $r(k)$ is asymptotical stable.
\n(CNVESTAV-IPN)
\nIntelligent Control
\nOctober 30, 2024
\n18 / 40

If $f [x (k)]$ and $g [x (k)]$ are unknown,

$$
\widehat{f}[x(k)] = W_1 \phi_1 [x(k)]
$$

$$
\widehat{g}[x(k)] = W_2 \phi_2 [x(k)]
$$

and

$$
f[x(k)] = W_1^* \phi_1[x(k)] + \widetilde{f}_1 = W_1 \phi_1[x(k)] + \widetilde{f}
$$

$$
g[x(k)] u(k) = W_2^* \phi_2[x(k)] u(k) + \widetilde{g}_1 = W_2 \phi_2[x(k)] + \widetilde{g}
$$

The dynamic of tracking error is

$$
r(k+1) = W_1^* \phi_1 [x(k)] + W_2^* \phi_2 [x(k)] u(k)
$$

-x_n^d (k+1) + $\lambda_1 e_n(k)$ + \cdots + $\lambda_{n-1} e_2(k)$ + d (k)

where $d(k) = \tilde{f} + \tilde{g}$.

4 0 8

Then NN based control is

$$
u(k) = [W_{2,k}\phi_2]^+ \{x_n^d (k+1) - W_{1,k}\phi_1 [x(k)] + k_v r(x) - \lambda_1 e_n(k) - \cdots - \lambda_{n-1} e_2(k)\}\
$$

where $\left[\cdot\right]^{+}$ stands for the pseudoinverse in Moor-Penrose sense,

$$
x^+ = \frac{x^T}{\|x\|^2}, \ 0^+ = 0
$$

The closed-loop system is

$$
r(k + 1) = W_1 \phi_1 [x(k)] + W_2 \phi_2 [x(k)] u(k)
$$

-x_n^d (k+1) + \lambda_1 e_n(k) + \cdots + \lambda_{n-1} e_2(k) + d(k)
= k_v r(k) + d_1(k)

where $W_{1,k} = W_{1,k} - W_1^*, W_{2,k} = W_{2,k} - W_2^*, d_1(k)$ $W_{1,k} = W_{1,k} - W_1^*, W_{2,k} = W_{2,k} - W_2^*, d_1(k)$ $W_{1,k} = W_{1,k} - W_1^*, W_{2,k} = W_{2,k} - W_2^*, d_1(k)$ $W_{1,k} = W_{1,k} - W_1^*, W_{2,k} = W_{2,k} - W_2^*, d_1(k)$ is bounded (□) (f)

 QQQ

Theorem

The following gradient updating law can make tracking error $r(k)$ bounded (stable in an L_{∞} sense)

$$
W_{1,k+1} = W_{1,k} - \eta_k r(k) \phi_1^T [x(k)]
$$

$$
W_{2,k+1} = W_{2,k} - \eta_k r(k) \phi_2^T [x(k)] u(k)
$$

where $\eta_{\,k}^{\,}$ satisfies

$$
\eta_{k} = \begin{cases} \frac{\eta}{1 + \|\phi_{1}\|^{2} + \|\phi_{2}u\|^{2}} & \text{if } \beta \left\| r (k+1) \right\| \geq \left\| r(k) \right\| \\ 0 & \text{if } \beta \left\| r (k+1) \right\| \geq \left\| r(k) \right\| \end{cases}
$$

here $1 \ge \eta > 0$, $\frac{1}{1+k_V} \ge \beta \ge 1$.

B

 Ω

4 ロト 4 何 ト 4

Proof

We select Lyapunov function as

$$
L_k = \left\| \widetilde{W}_{1,k} \right\|^2 + \left\| \widetilde{W}_{2,k} \right\|^2 \tag{5}
$$

4 0 8

where $\left\Vert \widetilde{W}_{1,k}\right\Vert$ $\mathcal{P}^2 = \sum_{i=1}^n \widetilde{w}_{1,k,i}^2 = tr\left\{ \widetilde{W}_{1,k}^{\mathcal{T}} \widetilde{W}_{1,k} \right\}$. From the updating law

$$
\widetilde{W}_{1,k+1} = \widetilde{W}_{1,k} - \eta_k r(k) \phi^T [x(k)] \n\Delta L_k = L_{k+1} - L_k \n= \left\| \widetilde{W}_{1,k} - \eta_k r(k) \phi_1^T [x(k)] \right\|^2 - \left\| \widetilde{W}_{1,k} \right\|^2 \n+ \left\| \widetilde{W}_{2,k} - \eta_k r(k) \phi_2^T [x(k)] u(k) \right\|^2 - \left\| \widetilde{W}_{2,k} \right\|^2 \n= \eta_k^2 r^2 (k) \left\| \phi_1 \right\|^2 + \eta_k^2 r^2 (k) \left\| \phi_2 u \right\|^2 \n-2\eta_k \left\| r(k) \phi_1^T \widetilde{W}_{1,k} \right\| - 2\eta_k \left\| r(k) \phi_2^T \widetilde{W}_{2,k} u(k) \right\|
$$

Using

$$
-2\eta_{k} \| r(k) \phi_{1}^{T} \widetilde{W}_{1,k} \| -2\eta_{k} \| r(k) \phi_{2}^{T} \widetilde{W}_{2,k} u(k) \| = -2\eta_{k} \| r(k) \| \left(\left\| \phi_{1}^{T} \widetilde{W}_{1,k} \right\| + \left\| \phi_{2}^{T} u(k) \widetilde{W}_{2,k} \right\| \right) \leq -2\eta_{k} \| r(k) \| \left\| \phi_{1}^{T} \widetilde{W}_{1,k} + \phi_{2}^{T} \widetilde{W}_{2,k} u(k) \right\| = -2\eta_{k} \| r(k) \| \| r(k+1) - k_{v} r(k) - \omega_{1}(k) \| = -2\eta_{k} \| r(k) r(k+1) - k_{v} r^{2}(k) - r(k) \omega_{1}(k) \|
$$

 \equiv 990

メロトメ 御 トメ ミトメ ミト

$$
\begin{aligned}\n\text{if } & \beta \left\| r \left(k+1 \right) \right\| \geq \left\| r \left(k \right) \right\| \\
&- 2\eta_k \left\| r \left(k \right) \phi_1^T \widetilde{W}_{1,k} \right\| - 2\eta_k \left\| r \left(k \right) \phi_2^T \widetilde{W}_{2,k} u \left(k \right) \right\| \\
&\leq -\frac{2\eta_k}{\beta} \left\| r \left(k \right) \right\|^2 + 2\eta_k k_v \left\| r \left(k \right) \right\|^2 + \eta_k \left\| r \left(k \right) \right\|^2 + \eta_k \left\| \omega_1 \left(k \right) \right\|^2 \\
\text{Using } 0 < \eta \leq 1, \ 0 \leq \eta_k \leq \eta \leq 1, \ \eta_k = \frac{\eta}{1 + \left\| \phi_1 \right\|^2 + \left\| \phi_2 u \right\|^2}\n\end{aligned}
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 90 Q ^

$$
\Delta L_{k} = \eta_{k}^{2} r^{2} (k) \left(\|\phi_{1}\|^{2} + \|\phi_{2} u\|^{2} \right) \n- \frac{2\eta_{k}}{\beta} r (k)^{2} + 2\eta_{k} k_{v} r (k)^{2} + \eta_{k} r (k)^{2} + \eta_{k} \omega_{1}^{2} (k) \n= -\eta_{k} \left[\frac{\left(\frac{2}{\beta} - 2k_{v} - 1\right)}{-\eta \frac{\|\phi_{1}\|^{2} + \|\phi_{2} u\|^{2}}{1 + \|\phi_{1}\|^{2} + \|\phi_{2} u\|^{2}} \right] r^{2} (k) + \eta_{k} \omega_{1}^{2} (k) \n\le -\pi r^{2} (k) + \eta \omega_{1}^{2} (k)
$$
\n(6)

where
$$
\pi = \frac{\eta}{1+\kappa} \left[\left(\frac{2\eta_k}{\beta} - 2k_v - 1 \right) - \frac{\kappa}{1+\kappa} \right],
$$

\n $\kappa = \max_{k} \left(\|\phi_1\|^2 + \|\phi_2 u\|^2 \right).$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 90 Q ^

$$
\text{Since } \tfrac{1}{1+k_V} \geq \beta \geq 1, \, \left(\tfrac{2}{\beta}-2k_v-1\right) > 1, \, \pi > 0
$$

$$
n \min\left(\widetilde{w}_i^2\right) \leq V_k \leq n \max\left(\widetilde{w}_i^2\right)
$$

where $n \times \min (\widetilde{w}_i^2)$ and $n \times \max (\widetilde{w}_i^2)$ are \mathcal{K}_{∞} -functions, and $\pi e^2 (k)$ is an \mathcal{K}_{∞} -function, $\eta \zeta^2 \left(k \right)$ is a $\mathcal{K}_{\varepsilon}$ -function. From ([??](#page-0-1)) and [\(5\)](#page-21-0) we know V_k is the function of $e(k)$ and $\zeta(k)$, so V_k admits the smooth ISS-Lyapunov function as in Definition 2. From Theorem 1, the dynamic of the identification error is input-to-state stable. The "INPUT" is corresponded to the second term of the last line in (6) , *i.e.*, the modeling error $\zeta(k) = \varepsilon(k) + \mu(k)$, the "STATE" is corresponded to the first term of the last line in [\(6\)](#page-24-0), *i.e.*, the identification error $e(k)$. Because the "INPUT" ζ (k) is bounded and the dynamic is ISS, the "STATE" $e(k)$ is bounded.

つへへ

If $\beta ||r(k+1)|| < ||r(k)||$, $\Delta L_k = 0$. L_k is constant, $W_{1,k}$, $W_{2,k}$ are the constants. Since $\|r\,(k+1)\| < \frac{1}{\beta}\,\|r\,(k)\|$, $\frac{1}{\beta} < 1$, $r\,(k)$ is bounded.

4 0 8

Now, we consider multilayer neural network(or multilayer perceptrons. MLP)

$$
\widehat{f}[x(k)] = W_{1,k}\phi_1[V_{1,k}x(k)]
$$
\n
$$
\widehat{g}[x(k)] = W_{2,k}\phi_2[V_{2,k}x(k)]
$$
\n(7)

where the weights in output layer are $V_{1,k}$, $V_{2,k} \in R^{m \times n}$, the weights in hidden layer are $W_{1,k}$, $W_{2,k} \in R^{1 \times m}$. m is the dimension of the hidden layer, n is the dimension of the state. The feedback control is Then the control $u(k)$ can be defined as the following

$$
u(k) = [W_{2,k}\phi_2 (V_{2,k}x(k))]^+ [x_n^*(k+1) - W_{1,k}\phi_1 (V_{1,k}x(k)) + k_v r(x) - \lambda_1 e_n(k) - \cdots - \lambda_{n-1} e_2(k)]
$$
\n(8)

つへへ

The closed-loop system becomes

$$
r(k+1) = k_v r(k) + \widetilde{f} + \widetilde{g} u(k)
$$
\n(9)

4 D F

Similar as ([??](#page-0-1))

$$
\widetilde{f} = W_1^* \phi_1 \left[V_1^* \times (k) \right] - W_{1,k} \phi_1 \left[V_{1,k} \times (k) \right] - \widetilde{f}_1
$$
\n
$$
\widetilde{g} u(k) = W_2^* \phi_2 \left[V_2^* \times (k) \right] u(k) - W_{2,k} \phi_2 \left[V_{2,k} \times (k) \right] u(k) - \widetilde{g}_1
$$

In the case of two independent variables, a smooth function f has Taylor formula as

$$
f(x_1,x_2) = \sum_{k=0}^{l-1} \frac{1}{k!} \left[(x_1 - x_1^0) \frac{\partial}{\partial x_1} + (x_2 - x_2^0) \frac{\partial}{\partial x_2} \right]_0^k f + R_l
$$

The closed-loop system is

$$
r(k+1) = k_v r(k) + \omega_2(k) + \widetilde{W}_{1,k}\phi_1 + W_{1,k}\phi_1' \widetilde{V}_{1,k}x + \widetilde{W}_{2,k}\phi_2 u + W_{2,k}\phi_2' \widetilde{V}
$$

\nwhere $\omega_2(k) = \widetilde{f}_1 + \widetilde{g}_1 + R_1 + R_2$, $\|\omega_2(k)\|^2 \le \overline{\omega}_2$. (10)

 $\,$ 重

э -4

K ロ ト K 伊 ト K

重

Theorem

If we use neuro adaptive control (8) to control nonlinear plant $(??)$ $(??)$ $(??)$, the following updating law can make tracking error $r(k)$ bounded (stable in an L_{∞} sense)

$$
W_{1,k+1} = W_{1,k} - \eta_k r(k) \phi_1^T,
$$

\n
$$
V_{1,k+1} = V_{1,k} - \eta_k r(k) r(k) \phi_1' W_{1,k}^T x^T(k)
$$

\n
$$
W_{2,k+1} = W_{2,k} - \eta_k r(k) u \phi_1^T,
$$

\n
$$
V_{2,k+1} = V_{2,k} - \eta_k r(k) u \phi_1' W_{2,k}^T x^T
$$
\n(11)

where $\eta_{\,k}^{\,}$ satisfies

$$
\eta_{k} = \begin{cases}\n\frac{\eta}{\|\phi_{1}\|^{2} + \|\phi_{2}u\|^{2}} & \text{if } \beta \mid r(k+1) \leq \|r(k)\| \\
+\left\|\phi_{1}'W_{1,k}^{T}x^{\top}\right\| + \left\|u\phi_{2}'W_{2,k}^{T}x^{\top}\right\| & \text{if } \beta \mid r(k+1) \leq \|r(k)\| \\
0 & \text{if } \beta \mid r(k+1) \leq \|r(k)\| \n\end{cases}
$$

 $\overline{\omega}$ ²

The average of the identification error satisfies

$$
J = \limsup_{T \to \infty} \frac{1}{T} \sum_{k=1}^{T} r^2 (k) \le \frac{\eta}{\pi} \overline{\omega}_2
$$
(12)
where $\pi = \frac{\eta}{1+\kappa} \left[1 - \frac{\kappa}{1+\kappa} \right] > 0$,
 $\kappa = \max_{k} \left(\|\phi_1\|^2 + \|\phi_2 u\|^2 + \left\| \phi_1' W_{1,k}^T x^\top \right\| + \left\| \phi_2' W_{2,k}^T x^\top u \right\| \right)$
 $\overline{\omega}_2 = \max_{k} \left[\overline{\omega}_2^2 (k) \right].$

 \sim × ≃ 活

∢ ロ ≯ (伊) -

Recurrent neural networks

The control goal is to force the system states $x(k)$ to track a linear reference model given by

$$
x^{d}\left(k+1\right) = F\left[x^{d}\left(k\right)\right]
$$
 (13)

The model based trajectory error is

$$
\Delta(k) = \hat{x}(k) - x^d(k)
$$

The real tracking error is

$$
\Delta^{d}(k) = x(k) - x^{d}(k)
$$

The control object is

$$
J_{\min} = \min_{u(k)} J, \ J = \left\| x(k) - x^d(k) \right\|^2
$$

For any $\eta > 0$,

$$
J \leq (1+\eta) \|x(k) - \hat{x}(k)\|^2 + (1+\eta^{-1}) \| \hat{x}(k) - x^d(k) \|^2 \qquad (14)
$$

- The minimum of the term $\left\| x\left(k\right) -\hat{x}\left(k\right) \right\| ^{2}$ has already been solved in modeling.
- Now we can reformulate the control goal to minimize the term $\left\|\hat{x}\left(k\right)-x^{d}\left(k\right)\right\|^{2}$. We note that

$$
\left\Vert \Delta^{d}\left(k\right)\right\Vert \geq\left\Vert \Delta\left(k\right)\right\Vert
$$

For simple case

$$
x(k+1) = f[x(k)] + u(k)
$$
 (15)

4 0 8

NN

$$
\hat{x}(k+1) = A\hat{x}(k) + W_1\phi[x(k)] + u(k)
$$
\n(16)

Reference

$$
x^{d}\left(k+1\right)=F\left[x^{d}\left(k\right)\right]
$$

Error dynamic is

$$
\begin{array}{l}\n\Delta(k) = \hat{x}(k) - x^{d}(k) \\
\Delta(k+1) = A\hat{x}(k) - Ax^{d}(k) + Ax^{d}(k) + W_{1}\phi[x(k)] + u(k) - F[x^{d}(k)] \\
= A\Delta(k) + Ax^{d}(k) + W_{1}\phi[x(k)] + u(k) - F[x^{d}(k)]\n\end{array}
$$

Recurrent neural networks for control

If

$$
u = Ax^{d}(k) + W_{1}\phi[x(k)] - F[x^{d}(k)]
$$

then

$$
\Delta\left(k+1\right)=A\Delta\left(k\right)
$$

 $\Delta(k) \rightarrow 0$

$$
\hat{x}(k) \rightarrow x^d(k)
$$

But The real tracking error is

$$
\left\Vert \Delta^{d}\left(k\right) \right\Vert \rightarrow\bar{\xi}
$$

¯*ξ* is upper bound of NN modeling error

4 0 8

The unknown nonline system is

$$
x(k+1) = f[x(k)] + u(k)
$$
 (17)

NN is

$$
\hat{x}(k+1) = A\hat{x}(k) + W_1\phi[x(k)] + u(k)
$$
\n(18)

The unknown nonlinear system can be represented as

$$
x(k+1) = Ax(k) + W_1^* \phi [x(k)] + u(k) + d
$$

The control goal is to force the system states $x(k)$ to track a linear reference model given by

$$
x^{d}\left(k+1\right) = F\left[x^{d}\left(k\right)\right]
$$
 (19)

Recurrent neural networks for control

The real tracking error is

$$
\Delta^{d}(k) = x(k) - x^{d}(k)
$$

The error dynamic ic

$$
\Delta (k+1) = Ax(k) + W_1 \phi [x(k)] + u(k) + d - F \left[x^d(k) \right]
$$

$$
\Delta^d (k+1) = A \Delta^d (k) + Ax^d (k) + W_1 \phi [x(k)] + u(k) - F \left[x^d (k) \right] + d
$$

If

$$
-u_1 = Ax^d (k) + W_1 \phi [x(k)] - F \left[x^d (k) \right]
$$

then

$$
\Delta^{d}(k+1)=A\Delta^{d}(k)+u_{2}+d
$$

4 0 8

$$
u_2=-Ksgn\left[\Delta^d\left(k\right)\right],\quad K>0
$$

≃

∢ ロ ≯ (伊) -

重

Without restriction of A_0 and B_0 , u_2 is selected according to the linear squares optimal control law

$$
u_2 = -R^{-1}P_k\Delta^d(k)
$$

 P_k is the solution of Riccati equation

$$
P_{k+1} = (A - K_k)^\top P_k (A - K_k) + Q + K_k^\top R K_k
$$

4 0 8