Neural Control

Wen Yu

Departamento de Control Automático CINVESTAV-IPN A.P. 14-740, Av.IPN 2508, MÈxico D.F., 07360, MÈxico

4 0 8

(CINVESTAV-IPN) [Intelligent Control](#page-38-0) October 23, 2024 1 / 39

 QQ

• Closed loop follow a prescribed transfer function

- **4** Cancellation of non-linearities
- 2 Resulting closed-loop transfer function
	- Pole placement
	- **A** Model Reference Control
- Minimize quadratic cost function
	- **1** Closed loop non-linear
	- 2 Adaptive
		- **Minimum variance**
		- Predictive control
		- Optimal control

4 D F

Feedback control, Linear control

Feedback control

$$
u=Kx\left(t\right)
$$

PID control

$$
u = K_p e(t) + K_i \int e(t) dt + K_d \frac{de(t)}{dt}
$$

4 0 8

 QQ

Indirect adaptive control

4 0 8

×. \rightarrow Þ

Direct adaptive control

4 0 8

(CINVESTAV-IPN) [Intelligent Control](#page-0-0) October 23, 2024 6 / 39

- **•** Linear controllers: small operational ranges
- Hard non-linearities: approximated by linear systems
- Model uncertainties
- Multiple equilibrium: nonlinear systems
- Model-based

4 0 8

Advance model-based control, feedback linearization, backstepping, direct inverse control, internal model control, MPC

- **1** Model-based control using data
- Intelligent methods for controller parameters
- ³ Intelligent controller as a compensator
- ⁴ Knowledge based control

 Ω

Neual adaptive control

J. (CINVESTAV-IPN) [Intelligent Control](#page-0-0) October 23, 2024 9 / 39

 \sim 重

∍ \sim

K ロ ト K 伊 ト K

÷,

Neural compensation

(CINVESTAV-IPN) [Intelligent Control](#page-0-0) October 23, 2024 10 / 39

重

 298

イロト イ部 トメ ヨ トメ ヨト

- Before 90's, off-line NN Training
- After 90ís, combining adaptive control, and NN parametrization, on-line adaptive NN control is investigated.
	- **1** neural controller
	- ² neural compensator

Neural control with identifiier

4 日下

 \mathcal{A} \rightarrow э

Neural compensator

画

∢ ロ ▶ イ 伊 ▶

Direct inverse control with NN

 \Rightarrow (CINVESTAV-IPN) [Intelligent Control](#page-0-0) Control October 23, 2024 14 / 39

 \sim 14.1 画

4 ロト 4 何 ト 4

Direct inverse control

Plant NARMAX model

$$
y(k+1) = f[y(k), \cdots y(k-n), u(k) \cdots u(k-m)]
$$

controller

$$
u_{1}(k) = f^{-1}\left[y\left(k+1\right), y\left(k\right)\cdots y\left(k-n\right), u\left(k\right)\cdots u\left(k-m\right)\right]
$$

but $y (k + 1)$ is not avaiable, replace $y (k + 1)$ with $r (k + 1)$

$$
u(k) = f^{-1} [r (k + 1), y (k) \cdots y (k - n), u (k) \cdots u (k - m)]
$$

If inverse exact, the output is the reference (dead-beat controller) $y (k + 1) = r(k + 1)$

$$
u(k) = \hat{t}_{nn}^{-1} [r(k+1), y(k) \cdots y(k-n), u(k) \cdots u(k-m)]
$$

Criterion for training $e(k) = r(k) - y(k)$

$$
J(n) = \frac{1}{n} \sum_{k=1}^{n} e^{2} (k)
$$

$$
J(k) = J(k-1) + e^{2} (k)
$$

Assume $J(k-1)$ has been minimized,

$$
w(k+1) = w(k) - \eta \frac{\partial J}{\partial w}
$$

and

$$
\frac{\partial J}{\partial w} = \frac{\partial e^{2}(k)}{\partial w} = -2e(k)\frac{\partial y(k)}{\partial w} = -2e(k)\frac{\partial y(k)}{\partial u(k)}\frac{\partial u(k)}{\partial w(k)}
$$

Here $\frac{\partial y(k)}{\partial u(k)}$ is Jacobians of the system, it is a scalar factor to modify the strp size of the algorithm, as long as it has the correct size

$$
u(k)=NN(w),
$$

Direct inverse control with identifiier

 \sim \mathcal{A} 画

K ロ ▶ K 何 ▶

 \cdot

If a nonlinear system (standard from, relative degree n) is known,

$$
x_1 = x_2
$$

\n
$$
\vdots
$$

\n
$$
x_n = f(x_1 \cdots x_n) + g(x_1 \cdots x_n) u
$$

\n
$$
y = x_1
$$

It is a SISO system

$$
y^{(n)} = f\left(y, y \cdots y^{(n-1)}\right) + g\left(y, y \cdots y^{(n-1)}\right) u
$$

or
$$
x^{(n)} = f\left(x, x \cdots x^{(n-1)}\right) + g\left(x, x \cdots x^{(n-1)}\right) u
$$
 (1)

4 D F

The control object : find a u such that $y \rightarrow y_m$. The tracking error is

$$
e_c=y_m-y
$$

Let

$$
e = \left[e_c, e_c \cdots e_c^{(n-1)}\right]^T, \quad x = \left[x_1 \cdots x_n\right]^T
$$

The ideal control is

$$
u^* = \frac{1}{g(x)} \left[-f(x) + y_m^{(n)} + K^T e \right]
$$

where $K = [k_n \cdots k_1]^T$.

4 0 8

The closed-loop system

$$
y^{(n)} = y_m^{(n)} + K^T e, \quad e_c^{(n)} + k_1 e_c^{(n-1)} + \dots + k_n e_c = 0
$$

$$
\dot{e} = Ae, \quad A = \begin{bmatrix} 0 & 1 & 0 & \cdots 0 \\ & & 1 & \\ -k_0 & \cdots & -k_{n-1} \end{bmatrix}
$$

We select K such that all roots of polynomial

$$
s^n + k_1 s^{n-1} + \cdots + k_n
$$

are in the left half of complex plane. So

$$
\lim_{t\to\infty}e_c\left(t\right)=0
$$

4 0 8

 Ω

If $f(x)$ is unkonwn, we use a static neural networks to approximate $f(x)$,

$$
\hat{f}(x) = W_f \phi_f(x), \quad f(x) = W_f^* \phi_f(x) + \eta_f
$$

The feedback linearization with NN is

$$
u = \frac{1}{g(x)} \left[-\widehat{f}(x) + y_m^{(n)} + K^T e \right]
$$

We define

$$
\begin{aligned}\n\widetilde{f} &= \widehat{f}(x) - f(x) \\
&= W_f \phi_f(x) - W_f^* \phi_f(x) - \eta_f \\
&= \widetilde{W}_f \phi_f(x) - \eta_f, \qquad \widetilde{W}_f = W_f - W_f^*\n\end{aligned}
$$

4 0 8

Stability

The ideal control is

$$
u^* = \frac{1}{g(x)} \left[-f(x) + y_m^{(n)} + K^T e \right]
$$

The control is substituted to plant $y^{(\textit{n})} = f + g \textit{u}$

$$
y^{(n)} = \left[\widehat{f}(x) - \widetilde{f}\right] + g\frac{1}{g}\left[-\widehat{f}(x) + y_m^{(n)} + K^T e\right]
$$

$$
y^{(n)} = y_m^{(n)} + K^T e - \widetilde{f}
$$

$$
\dot{e} = Ae - b\widetilde{f} \quad b = [0, \cdots 0, 1]^T
$$

Let Lyapunov function

$$
V = e^{T} P e + \frac{1}{k_f} \widetilde{W}_f^T \widetilde{W}_f
$$

\n
$$
V = e^{T} (A^{T} P + P A) e - 2e^{T} P b (\widetilde{W}_f \phi_f (x) - \eta_f) + 2 \frac{1}{k_f} tr \left[\widetilde{W}_f^T \widetilde{W}_f \right]
$$

\n
$$
2e^{T} P b \eta_f \le e^{T} P b \Lambda^{-1} b^{T} P e + \overline{\eta}_f
$$

4 0 8

4 何 ▶

 QQ

Stability

If the larning algorithm is

$$
\dot{\widetilde{W}}_f = \dot{W}_f = k_f e^T P b \phi_f
$$

and

$$
A^T P + P A + P b \Lambda^{-1} b^T P = -Q
$$

then

$$
V \leq -e^T Q e + \overline{\eta}_f
$$

Dead zone updating law

$$
W_f = \left\{ \begin{array}{cc} k_f e^T P b \phi_f & \|e\|_Q^2 \ge \overline{\eta}_f \\ 0 & \|e\|_Q^2 < \overline{\eta}_f \end{array} \right.
$$

If $\|e\|_Q^2 \geq \overline{\eta}_f$, $V \leq 0$, V is bounded. If $\|e\|_Q^2 < \overline{\eta}_f$, e is bounded and W_f is stopp[e](#page-22-0)d , it is also bounded, V is bounded. $\mathsf{Fingoly} \left\| \varrho \right\|_{Q_{\overline{z}}}^2 \rightarrow \overline{\eta}_j$ $\mathsf{Fingoly} \left\| \varrho \right\|_{Q_{\overline{z}}}^2 \rightarrow \overline{\eta}_j$ $\mathsf{Fingoly} \left\| \varrho \right\|_{Q_{\overline{z}}}^2 \rightarrow \overline{\eta}_j$

We use the following MLP to approximate $f(x)$,

$$
\hat{f}(x) = W_f \phi_f (V_f x), \quad f(x) = W_f^* \phi_f (V_f^* x) + \eta_f
$$

We define

$$
\begin{aligned}\n\widetilde{f} &= \widehat{f}(x) - f(x) \\
&= W_f \phi_f (V_f x) - W_f^* \phi_f (V_f^* x) - \eta_f\n\end{aligned}
$$

4 0 8

 QQ

Use Taylor serial

$$
f(x) = f(x^*) + (x - x^*) \frac{\partial f}{\partial t} + \delta_f
$$

So

$$
\begin{aligned}\n\widetilde{f} &= W_f \phi_f \left(V_f x \right) - W_f^* \phi_f \left(V_f^* x \right) - \eta_f \\
&= W_f \phi_f \left(V_f x \right) - W_f \phi_f \left(V_f^* x \right) + W_f \phi_f \left(V_f^* x \right) - W_f^* \phi_f \left(V_f^* x \right) - \eta_f \\
&= W_f \left(\widetilde{V}_f x \right) \dot{\phi}_f + \widetilde{W}_f \phi_f \left(V_f^* x \right) - \eta_{1f}\n\end{aligned}
$$

where $\eta_{1f} = \eta_f + \delta_f$

4 0 8

∢ ⁄ ⊕ →

画

The control is substituted to plant $y^{(n)}=f+g\mu$

$$
\dot{\mathbf{e}} = A\mathbf{e} - b\widetilde{f} \quad b = [0, \cdots 0, 1]^T
$$

Let Lyapunov function

$$
V = e^{T} P e + \frac{1}{k_{f}} tr \left[\widetilde{W}_{f}^{T} \widetilde{W}_{f} \right] + \frac{1}{k_{f}} tr \left[\widetilde{V}_{f}^{T} \widetilde{V}_{f} \right]
$$

\n
$$
V = e^{T} (A^{T} P + P A) e - 2 e^{T} P b \left(W_{f} (\widetilde{V}_{f} x) \dot{\phi}_{f} + \widetilde{W}_{f} \phi_{f} (V_{f}^{*} x) - \eta_{1f} \right)
$$

\n
$$
+ 2 \frac{1}{k_{f}} \left[\widetilde{W}_{f}^{T} \widetilde{W}_{f} \right] + 2 \frac{1}{k_{f}} \left[\widetilde{V}_{f}^{T} \widetilde{V}_{f} \right]
$$

\n
$$
2 e^{T} P b \eta_{1f} \le e^{T} P b \Lambda^{-1} b^{T} P e + \overline{\eta}_{1f}
$$

4 0 8

∢ ⁄<mark>⊡</mark> ≯

Stability of MLP

If the larning algorithm is

$$
W_f = k_f e^T P b \phi_f (V_f^* x)
$$

$$
V_f = k_f e^T P b \dot{\phi}_f W_f x
$$

and

$$
A^T P + P A + P b \Lambda^{-1} b^T P = -Q
$$

then

$$
V \leq -e^T Q e + \overline{\eta}_{1f}
$$

Dead zone updating law

$$
s = \begin{cases} k_f e^T P b \phi_f & \|e\|_Q^2 \ge \overline{\eta}_{1f} \\ 0 & \|e\|_Q^2 < \overline{\eta}_{1f} \end{cases}
$$

If $\|e\|_Q^2 \geq \overline{\eta}_f$, $V \leq 0$, V is bounded. If $\|e\|_Q^2 < \overline{\eta}_f$, e is bounded and W_f is stopped , it is also bounded, V is bounded. Finally $\|e\|_Q^2 \to \overline{\eta}_{1f}$. $\phi_f(V_f^*x) \to \phi_f(V_f^0x)$ つへへ (CINVESTAV-IPN) [Intelligent Control](#page-0-0) October 23, 2024 27 / 39

If both f and g are unkonwn, we use two neural networks to approximate them,

$$
\hat{f}(x) = W_f \phi_f(x), \quad f(x) = W_f^* \phi_f(x) + \eta_f
$$

$$
\hat{g}(x) = W_g \phi_g(x), \quad g(x) = W_g^* \phi_g(x) + \eta_g
$$

The feedback linearization with NN is

$$
u = \frac{1}{\hat{g}(x)} \left[-\hat{f}(x) + y_m^{(n)} + K^T e \right]
$$

(□) (n) (

We define

$$
\widetilde{g} = \widehat{g}(x) - g(x) \n= W_g \phi_g(x) - W_g^* \phi_g(x) - \eta_g \n= \widetilde{W}_g \phi_g(x) - \eta_g
$$

and

$$
\widetilde{f} = \widehat{f}(x) - f(x) \n= W_f \phi_f(x) - W_f^* \phi_f(x) - \eta_f \n= \widetilde{W}_f \phi_f(x) - \eta_f
$$

重

 298

イロト イ部 トイヨ トイヨト

The control
$$
u = \frac{1}{\hat{g}} \left[-\hat{f} + y_m^{(n)} + K^T e \right]
$$
 is substituted to plant

$$
y^{(n)} = f + gu
$$

$$
y^{(n)} = \left[\hat{f} - \tilde{f}\right] + \left(\hat{g} - \tilde{g}\right)\frac{1}{\hat{g}}\left[-\hat{f} + y_m^{(n)} + K^{\mathsf{T}}e\right]
$$

= $y_m^{(n)} + K^{\mathsf{T}}e - \tilde{f} - \tilde{g}\frac{1}{\hat{g}}\left[-\hat{f} + y_m^{(n)} + K^{\mathsf{T}}e\right]$
= $y_m^{(n)} + K^{\mathsf{T}}e - \tilde{f} - \tilde{g}u$
 $\dot{e} = Ae - b\left(\tilde{f} + \tilde{g}u\right)$ $b = \left[0, \cdots 0, 1\right]^{\mathsf{T}}$

(CINVESTAV-IPN) [Intelligent Control](#page-0-0) October 23, 2024 30 / 39

Ε. 2990

メロトメ 伊 トメ 君 トメ 君 ト

Let Lyapunov function

$$
V = e^{T} P e + \frac{1}{k_f} \widetilde{W}_f^T \widetilde{W}_f + \frac{1}{k_g} \widetilde{W}_g^T \widetilde{W}_g
$$

$$
V = e^{T} (A^{T} P + P A) e - 2e^{T} P b \left(\widetilde{W}_f \phi_f (x) - \eta_f \right) + 2 \frac{1}{k_f} tr \left[\widetilde{W}_f^T \widetilde{W}_f \right]
$$

$$
-2e^{T} P b \left[\widetilde{W}_g \phi_g (x) - \eta_g \right] u + 2 \frac{1}{k_g} tr \left[\widetilde{W}_g^T \widetilde{W}_g \right]
$$

and

$$
2e^T P b \eta_f \le e^T P b \Lambda_f^{-1} b^T P e + \overline{\eta}_f
$$

$$
2e^T P b \eta_g \le e^T P b \Lambda_g^{-1} b^T P e + \overline{\eta}_g
$$

 $\,$ \rightarrow 重

∍

K ロ ト K 伊 ト K

重

If the larning algorithm is

$$
\dot{W}_f = k_f e^T P b \phi_f
$$

$$
\dot{W}_g = k_g e^T P b \phi_g u
$$

and

$$
A^T P + P A + P \left(b \Lambda_f^{-1} b^T + b \Lambda_g^{-1} b^T \right) P = -Q
$$

then

$$
V \leq -e^T Q e + \overline{\eta}_f + \overline{\eta}_g
$$

重

 $2Q$

重

∍ \rightarrow -4

K ロ ト K 伊 ト K

We need

$$
\hat{g}\left(x\right)=W_{g}\phi_{g}\left(x\right)\neq0
$$

 $\phi_{_{\mathcal{B}}}\left(\mathsf{x}\right)$ can be made such that

$$
\left|\phi_{g}\left(x\right)\right|\geq a>0
$$

But how to assure W_g in

$$
W_g = k_g e^T P b \phi_g u
$$

We use projection for W_g such that

$$
\|W_{g}\|\geq b_0
$$

4 0 8

The projection technique

$$
W_{g} = \begin{cases} k_{g}e^{T}Pb\phi_{g}u & \text{or } \|W_{g}\| = b_{0} \text{ and } \left(e^{T}Pb\phi_{g}u\right)(W_{g}) \geq 0\\ 0 & \text{otherwise} \end{cases}
$$

The projection condition is

\n- if
$$
W_g \geq 0
$$
, $k_g e^T P b \phi_g u > 0$, so $||W_g|| \uparrow$
\n- if $W_g < 0$, $k_g e^T P b \phi_g u < 0$, so $||W_g|| \uparrow$
\n
\nIt assures $|W_g| \geq b > 0$.

э

← ロ → → ← 何 →

Stability of projection

$$
\dot{W}_f = k_f e^T P b \phi_f
$$

$$
\dot{W}_g = s k_g e^T P b \phi_g u
$$

Lyapunov

$$
V = e^T P e + \frac{1}{k_f} \widetilde{W}_f^T \widetilde{W}_f + \frac{1}{s k_g} \widetilde{W}_g^T \widetilde{W}_g
$$

$$
s = \begin{cases} 1 & \text{if } \|W_g\| > b_0 \text{ or } \|W_g\| = b_0 \text{ and } \left(e^T P b \phi_g u\right) (W_g) \ge 0\\ 0 & \text{otherwise} \end{cases}
$$

Because

$$
\dot{V} \leq -e^T Q e + \overline{\eta}_f + \overline{\eta}_g
$$

+
$$
\left[\frac{1}{s k_g} \widetilde{W}_g - e^T P b \phi_g(x) u\right] \widetilde{W}_g
$$

B x x B

K ロ ト K 伊 ト K

重

Stability of projection

If
$$
|W_g| > b_0
$$
 or $|W_g| = b_0$ and $\left(e^T P b \phi_g u\right)(W_g) \ge 0$, $s = 1$

$$
V \le -e^T Q e + \overline{\eta}_f + \overline{\eta}_g
$$

if $|W_{\cal g}| = b_0$, it is a constant, $\overset{\cdot}{W}_{\cal g} = 0$, $\overset{\cdot}{W}_{\cal g}\overset{\cdot}{W}_{\cal g} = 0$, If $W_g < 0$, $\left(e^T P b \phi_g u\right) > 0$, $2e^\mathcal{T} P b \widetilde{W}_{\mathcal{E}} \phi_{\mathcal{E}}^-(\times) \ \! u = tr \left\{ \left(-b_0 - W^0 \right) \left[e^\mathcal{T} P b \phi_{\mathcal{E}}^{\vphantom{1}} u \right] \right\} < 0.$ If $W_{g} \geq 0$, $\left(e^{\mathsf{T}} P b \phi_{g} u\right) < 0$, $2e^\mathcal{\mathcal{T}}Pb\widetilde{W}_{\mathcal{g}}\phi_{\mathcal{g}}^{\vphantom{\dag}}\left(\mathsf{x}\right)u=tr\left\{ \left(b_{0}-W^{0}\right)\left[e^{\mathcal{\mathcal{T}}P}b\phi_{\mathcal{g}}^{\vphantom{\dag}}u\right]\right\} <0$ $\tilde{V} \leq -e^{\mathcal{T}} Qe + \overline{\eta}_{f} + \overline{\eta}_{g} + 2e^{\mathcal{T}}Pb\widetilde{W}_{g}\phi_{g}\left(x\right)w$ $\leq -e^\mathcal{T} Q e + \overline{\eta}_f + \overline{\eta}_g$

In both cases

$$
V < -e^{T}Qe + \overline{\eta}_{e} + \overline{\eta}_{e}^{1} \longrightarrow \text{CDF} \longrightarrow \text{CDF} \longrightarrow \text{CDF} \longrightarrow \text{CDF} \longrightarrow \text{CDF} \longrightarrow 3004
$$

(CINVESTAV-IPN)

Stability of projection and dead-zone

Is it
$$
||e||_Q^2 \rightarrow (\overline{\eta}_f + \overline{\eta}_g)
$$
?
\n
$$
W_f = s_f k_f e^T P b \phi_f
$$
\n
$$
W_g = s_g k_g e^T P b \phi_g u
$$
\n
$$
s_f = \begin{cases} 1 & \text{if } ||e||_Q^2 \ge (\overline{\eta}_f + \overline{\eta}_g) \\ 0 & \text{otherwise} \end{cases}
$$
\n
$$
s_g = \begin{cases} 1 & \text{if } ||W_g|| > b \text{ or } ||W_g|| = b \\ 1 & \text{and } \left(e^T P b \phi_g u\right) (W_g) \ge 0 \\ a \text{and } ||e||_Q^2 \ge (\overline{\eta}_f + \overline{\eta}_g) \end{cases}
$$
\nwhere \overline{u} is the same as \overline{u} is the same

 $||e||_Q^2 \rightarrow$ $\left(\overline{\eta}_f + \overline{\eta}_g \right)$ and all signals are bounded

4 0 8

 \bullet

$$
W_f = s_f k_f e^T P b \phi_f
$$

$$
W_f = \begin{cases} k_f e^T P b \phi_f & \text{if } ||W_f|| < M_f \text{ or } ||W_f|| = M_f\\ \text{and } (e^T P b \phi_f) & \text{otherwise} \end{cases}
$$

where

$$
\Pr\left(k_f e^T P b \phi_f\right) = k_f e^T P b \phi_f - k_f e^T P b \phi_f \frac{W_f}{\|W_f\|^2}
$$

画

K ロ ▶ K 何 ▶

Lyapunov function

$$
V_f = tr (W_f^T W_f)
$$

$$
V_f = 2tr (W_f^T W_f)
$$

If $\|W_f\| = M_f$ and $(e^T P b \phi_f) W_f \leq 0$

$$
\dot{V}_f = 2tr\left(W_f^T\left(k_f e^T P b \phi_f\right)\right) \leq 0, \qquad ||W_f|| \downarrow
$$

If $\|W_f\| = M_f$ and $(e^T P b \phi_f) W_f > 0$

$$
\dot{V}_f = 2tr\left(W_f^T\left(k_f e^T P b \phi_f\right) - k_f e^T P b \phi_f \frac{W_f^T W_f}{\|W_f\|^2}\right) = 0
$$

 $\|W_f\|$ is constant