Stable learning

Wen Yu

Departamento de Control Automático
CINVESTAV-IPN
A.P. 14-740, Av.IPN 2508, México D.F., 07360, México

Input-to-state stability (ISS)

Definition

A system is said to be globally input-to-state stability if there exists a \mathcal{K} -function $\gamma(\cdot)$ (continuous and strictly increasing $\gamma(0)=0$) and \mathcal{KL} -function $\beta(\cdot)$ (\mathcal{K} -function and $\lim_{s_k\to\infty}\beta(s_k)=0$), such that, for each $u\in L_\infty$ (sup $\{\|u(k)\|\}<\infty$) and each initial state $x^0\in R^n$, it holds that $\|x(k,x^0,u(k))\|\leq \beta(\|x^0\|+k)+\gamma(\|u(k)\|)$

$$||x(k, x^{0}, u(k))|| \le \beta(||x^{0}||, k) + \gamma(||u(k)||)$$

Definition

A smooth function $V:\Re^n\to\Re\geq 0$ is called a smooth ISS-Lyapunov function for system if:

(a) there exists a \mathcal{K}_{∞} -function $\alpha_1(\cdot)$ and $\alpha_2(\cdot)$ (\mathcal{K} -function and $\lim_{s_k \to \infty} \beta\left(s_k\right) = \infty$) such that

$$\alpha_1(s) \le L(s) \le \alpha_2(s), \quad \forall s \in \Re^n$$

(CINVESTAV-IPN) Intelligent Control October 17, 2024

2 / 35

Input-to-state stability (ISS)

Stable training law without dead-zone modification is

$$W_{k+1} = W_k - s_k \eta_k \phi \left[V_k X(k) \right] e(k)$$

$$V_{k+1} = V_k - s_k \eta_k W^0 \phi' X(k) e(k)$$

where

$$\eta_{k} = \frac{\eta_{0}}{1 + \|\phi V_{k} X(k)\|^{2} + \|W^{0} \phi' X(k)\|^{2}}, \qquad 0 \leq \eta_{0} \leq 1$$

(CINVESTAV-IPN) Intelligent Control October 17, 2024 3 / 35

Input-to-state stability (ISS)

When

$$2\eta_{k}e(k)\left[\delta(k) + \xi(k)\right] \leq \eta_{k}e^{2}(k) + \eta_{k}\left[\delta(k) + \xi(k)\right]^{2}$$

$$\leq \eta_{k}e^{2}(k) + \eta_{k}\overline{\xi} + \overline{\delta}$$

$$\Delta L_{k} \leq \eta_{k} \left[\frac{\left(\|\phi V_{k} X(k)\|^{2} + \|W^{0} \phi' X(k)\|^{2} \right)}{1 + \|\phi V_{k} X(k)\|^{2} + \|W^{0} \phi' X(k)\|^{2}} \eta_{0} - 1 \right] e^{2}(k) + \eta_{k} \left[\delta(k) + \xi(k) \right]^{2} \\
\leq -\pi_{k} e^{2}(k) + \eta_{k} \epsilon^{2}(k)$$

 π_k is an \mathcal{K}_{∞} -function, $\eta_k \left[\delta \left(k \right) + \xi \left(k \right) \right]^2$ is a \mathcal{K} -function. L_k is the

function of $e\left(k\right)$ and $\varepsilon\left(k\right)=\delta\left(k\right)+\xi\left(k\right)$, $n\left[\min\left(\widetilde{w}_{i}^{2}\right)+\min\left(\widetilde{v}_{i}^{2}\right)\right]$ and $n\left[\max\left(\widetilde{w}_{i}^{2}\right)+\max\left(\widetilde{v}_{i}^{2}\right)\right]$ are \mathcal{K}_{∞} -functions, so L_{k} admits the smooth ISS-Lyapunov function. If the input

$$\|\epsilon(k)\|_{2} = \|\delta(k)\|_{2} + \|\xi(k)\|_{2} \leq \bar{\xi} + \bar{\delta}$$

is bounde, then the state $e^{2}(k)$ is bounded

4 / 35

• Plant: discrete-time state-space nonlinear system

$$x(k+1) = f[x(k), u(k)]$$

NN model

$$\widehat{x}(k+1) = A\widehat{x}(k) + \sigma[W_1(k)x(k)] + \phi[W_2(k)x(k)]u(k)$$

- Learning methods
 - BPTT
 - Stable learning

Discrete-time recurrent neural networks

$$\hat{x}\left(k+1\right) = A\hat{x}\left(k\right) + W_{1}\phi\left[V_{1}\hat{x}\left(k\right)\right] + W_{2}\phi\left[V_{2}\hat{x}\left(k\right)\right]u\left(k\right)$$

Simplest case, RNN is

$$\hat{x}(k+1) = A\hat{x}(k) + W\phi[x(k)]$$

Unknown nonlinear system is

$$x(k+1) = f[x(k)]$$

From generalized Stone-Weierstrass theorem, the nonlinear system can be written as

$$x(k+1) = Ax(k) + W^*\phi[x(k)]$$

◆□▶◆□▶◆≣▶◆≣▶ ■ 少९○

The modeling error is

$$e = \hat{x}(k) - x(k)$$

The error dynamic is

$$e(k+1) = Ae(k) + \tilde{W}\phi[x(k)]$$

We use the updating law as

$$W(k+1) = W(k) - \eta \phi e(k)$$

Lyapunov function is

$$L(k) = \left\| \tilde{W}(k) \right\|^2$$

So

$$\Delta L(k) = \|\tilde{W}(k) - \eta \phi e(k)\|^{2} - \|\tilde{W}(k)\|^{2}$$

= $\eta^{2} \|e(k)\|^{2} \phi^{2} - 2\eta \|\tilde{W}\phi\| \|e(k)\|$

The error dynamic

$$e(k+1) = Ae(k) + \tilde{W}\phi[x(k)]$$

$$\begin{split} & \Delta L\left(k\right) = \eta^{2}e^{2}\left(k\right)^{2}\phi^{2} - 2\eta \left\| e\left(k+1\right) - Ae\left(k\right) \right\| \left\| e\left(k\right) \right\| \\ & = \eta^{2} \left\| e\left(k\right) \right\|^{2}\phi^{2} - 2\eta \left\| e\left(k\right)^{T}e\left(k+1\right) - e\left(k\right)^{T}Ae\left(k\right) \right\| \\ & \leq \eta^{2} \left\| e\left(k\right) \right\|^{2}\phi^{2} - 2\eta \left\| e\left(k\right)^{T}e\left(k+1\right) \right\| + 2\eta \left\| e\left(k\right) \right\|_{\lambda_{\max}(A)}^{2} \\ & \leq -2 \left\| e\left(k\right)^{T}e\left(k+1\right) \right\| + \left[2\lambda_{\max}\left(A\right) + \eta\phi^{2} \right] \left\| e\left(k\right) \right\|^{2} \end{split}$$

8 / 35

(CINVESTAV-IPN) Intelligent Control October 17, 2024

We need

$$\left\| e\left(k\right)^T e\left(k+1\right) \right\| \rightarrow \left\| e\left(k\right) \right\|^2$$

Define RNN as

$$\beta \hat{x}(k+1) = A\hat{x}(k) + W\phi[x(k)]$$

where $\beta > 0$ is a design parameter. So the error dynamic is

$$eta e\left(k+1
ight) = Ae\left(k
ight) + ilde{W}\phi\left[x\left(k
ight)
ight]$$

and

$$\Delta L(k) \le -2 \|e(k)^T e(k+1)\| + [2\lambda_{\max}(A) + \eta \phi^2] \|e(k)\|^2$$

If
$$\|\beta e(k+1)\| \ge \|e(k)\|$$

$$\Delta L(k) \le -2 \|e(k)\|^2 + \left[2\lambda_{\max}(A) + \eta\phi^2\right] \|e(k)\|^2$$

$$= -2\left\{1 - \left[\lambda_{\max}(A) + \frac{1}{2}\eta\phi^2\right]\right\} \|e(k)\|^2$$

We need

$$\begin{split} & \lambda_{\text{max}}\left(A\right) + \frac{1}{2}\eta\phi^2 < 1 \\ & \eta < 2\frac{1-\lambda_{\text{max}}(A)}{\phi^2}, \quad \eta_0 \leq 2\left[1-\lambda_{\text{max}}\left(A\right)\right] \\ & \eta\left(k\right) = \frac{\eta_0}{1+\phi^2} \leq \frac{2\left[1-\lambda_{\text{max}}(A)\right]}{1+\phi^2} < \frac{2\left(1-\lambda_{\text{max}}(A)\right)}{\phi^2} \end{split}$$

◆ロト ◆個ト ◆差ト ◆差ト 差 めなべ

The RNN is

$$\beta \hat{x}(k+1) = A\hat{x}(k) + W\phi[x(k)], \qquad \beta > 0$$

The updating law as

$$W(k+1) = W(k) - \eta(k) \phi e(k)$$

where $\eta\left(k\right)=\frac{\eta_0}{1+\phi^2[\mathbf{x}(k)]},\ \eta_0\leq 2\left[1-\lambda_{\max}\left(A\right)\right],$ If $\left\|eta e\left(k+1\right)\right\|<\left\|e\left(k\right)\right\|$ we stop the updating, finally

$$\eta\left(k\right) = \left\{ \begin{array}{ll} \frac{\eta_0}{1 + \phi^2\left[x(k)\right]} & \text{if } \beta \left\|e\left(k+1\right)\right\| \geq \left\|e\left(k\right)\right\| \\ 0 & \text{if } \beta \left\|e\left(k+1\right)\right\| < \left\|e\left(k\right)\right\| \end{array} \right.$$

Unmodeled dynamic

RNN is

$$\beta \hat{x}(k+1) = A\hat{x}(k) + W\phi[x(k)]$$

Unknown nonlinear system is

$$x(k+1) = f[x(k)]$$

The nonlinear system can be written as

$$x(k+1) = Ax(k) + W^*\phi[x(k)] + \xi(k)$$

where $\|\xi(k)\|^2 \leq \bar{\xi}$

Unmodeled dynamic

So the error dynamic is

$$eta e\left(k+1
ight) = Ae\left(k
ight) + ilde{W}\phi\left[x\left(k
ight)\right] - ilde{\xi}\left(k
ight)$$

Lyapunov function is

$$L(k) = \left\| \tilde{W}(k) \right\|^2$$

then

$$\begin{split} & \Delta L\left(k\right) = \eta^{2}e^{2}\left(k\right)^{2}\phi^{2} - 2\eta \left\|-\beta e\left(k+1\right) + Ae\left(k\right) + \xi\left(k\right)\right\| \left\|e\left(k\right)\right\| \\ & = \eta^{2}\left\|e\left(k\right)\right\|^{2}\phi^{2} - 2\eta \left\|-e\left(k\right)^{T}e\left(k+1\right) + e\left(k\right)^{T}Ae\left(k\right) + \xi\left(k\right)e\left(k\right)\right\| \\ & \leq \eta^{2}\left\|e\left(k\right)\right\|^{2}\phi^{2} - 2\eta \left\|e\left(k\right)^{T}e\left(k+1\right)\right\| + 2\eta\left\|e\left(k\right)\right\|_{\lambda_{\max}(A)}^{2} + \eta\left\|\xi\left(k\right)\right\|^{2} \\ & \leq -2\left\|e\left(k\right)^{T}e\left(k+1\right)\right\| + \left[1 + 2\lambda_{\max}\left(A\right) + \eta\phi^{2}\right]\left\|e\left(k\right)\right\|^{2} + \left\|\xi\left(k\right)\right\|^{2} \end{split}$$

13 / 35

(CINVESTAV-IPN) Intelligent Control October 17, 2024

Unmodeled dynamic

If
$$\|\beta e(k+1)\| \geq \|e(k)\|$$

$$\Delta L(k) \le -2 \|e(k)\|^2 + \left[1 + 2\lambda_{\max}(A) + \eta \phi^2\right] \|e(k)\|^2 + \|\xi(k)\|^2$$

$$= -\left[1 - 2\lambda_{\max}(A) - \eta \phi^2\right] \|e(k)\|^2 + \|\xi(k)\|^2$$

We need

$$\begin{array}{l} 2\lambda_{\mathsf{max}}\left(A\right) + \eta\phi^2 < 1 \\ \eta < \frac{1-2\lambda_{\mathsf{max}}(A)}{\phi^2}, \quad \eta_0 \leq 1 - 2\lambda_{\mathsf{max}}\left(A\right) \\ \eta\left(k\right) = \frac{\eta_0}{1+\phi^2} \leq \frac{1-2\lambda_{\mathsf{max}}(A)}{1+\phi^2} < \frac{1-2\lambda_{\mathsf{max}}(A)}{\phi^2} \end{array}$$

then

$$\Delta L(k) \le -\frac{\eta_0}{1+\phi^2} \|e(k)\|^2 + \|\xi(k)\|^2 \le \frac{\eta_0}{1+\bar{\phi}} \|e(k)\|^2 + \bar{\xi}$$

The average of the identification error satisfies

$$J = \limsup_{T \to \infty} \frac{1}{T} \sum_{k=1}^{T} \mathrm{e}^{2} \left(k \right) \leq \frac{\left(1 + \bar{\phi} \right)}{\eta_{0}} \bar{\xi}$$

Single-layer neural network

Discrete-time recurrent neural networks

$$\hat{x}\left(k+1\right)=A\hat{x}\left(k\right)+W_{1}\phi_{1}\left[\hat{x}\left(k\right)\right]+W_{2}\phi_{2}\left[\hat{x}\left(k\right)\right]U\left(k\right)$$

Theorem

If the single-layer neural network is used to identify nonlinear plant, the eigenvalues of A is selected as $-1 < \lambda\left(A\right) < 0$, the following gradient updating law can make the identification error $e\left(k\right)$ bounded (stable in an L_{∞} sense)

$$\begin{aligned} W_{1}\left(k+1\right) &= W_{1}\left(k\right) - \eta\left(k\right)\phi_{1}\left[\hat{x}\left(k\right)\right]e^{T}\left(k\right) \\ W_{2}\left(k+1\right) &= W_{2}\left(k\right) - \eta\left(k\right)U(k)\phi_{2}\left[\hat{x}\left(k\right)\right]e^{T}\left(k\right) \end{aligned}$$

where $\eta(k)$ satisfies

$$\eta\left(k\right) = \left\{ \begin{array}{ll} \frac{\eta}{1 + \left\|\phi_{1}\right\|^{2} + \left\|U(k)\phi_{2}\right\|^{2}} & \text{if } \beta \left\|e\left(k+1\right)\right\| \geq \left\|e\left(k\right)\right\| \\ 0 & \text{if } \beta \left\|e\left(k+1\right)\right\| < \left\|e\left(k\right)\right\| \end{array} \right.$$

(CINVESTAV-IPN) Intelligent Control October 17, 2024 15 / 35

Multilayer RNN

The discrete-time multilayer recurrent neural networks

$$\beta \hat{x}(k+1) = A\hat{x}(k) + W_k \sigma [V_k x(k)]$$

Identification with RNN

The smooth function f has Taylor formula as

$$f(x_1, x_2) = \sum_{k=0}^{l-1} \frac{1}{k!} \left[(x_1 - x_1^0) \frac{\partial}{\partial x_1} + (x_2 - x_2^0) \frac{\partial}{\partial x_2} \right]_0^k f + R_l$$

where R_l is the remainder of the Taylor formula.

Using Taylor series around the point of $W_kX(k)$ and V_k , the identification error $e(k) = \hat{x}(k) - x(k)$ can be represented as

$$\beta e(k+1) = Ae(k) + \tilde{W}_{k}\phi[V_{k}x(k)] + W^{*}\phi'\tilde{V}_{k}x(k) + \zeta(k)$$

 $\zeta\left(k\right)=R_{1}+\mu\left(k\right)$, here R_{1} is second order approximation error of the Taylor series.

Multilayer RNN

Theorem

For multilayer RNN, A is selected as $-1 < \lambda(A) < 0$, the following gradient updating law can make identification error e(k) bounded

$$W_{k+1} = W_k - \eta_k e(k) \phi$$

$$V_{k+1} = V_k - \eta_k e(k) \phi' W^0 x(k)$$

where $0<\eta\leq 1$

$$\eta_{k} = \left\{ \begin{array}{ll} \frac{\eta}{1 + \left\|\phi'W^{0}\right\|^{2} + \left\|\phi\right\|^{2}} & \textit{if } \beta \left\|e\left(k+1\right)\right\| \geq \left\|e\left(k\right)\right\| \\ 0 & \textit{if } \beta \left\|e\left(k+1\right)\right\| < \left\|e\left(k\right)\right\| \end{array} \right.$$

The average of the identification error satisfies

$$J = \limsup_{T \to \infty} \frac{1}{T} \sum_{k=1}^{T} e^{2} \left(k \right) \leq \frac{\eta}{\pi} \overline{\zeta}$$

(CINVESTAV-IPN) Intelligent Control October 17, 2024

Recurrent MultiLayer Perceptrons

Countinous-time RNN (Dynamic neural networks)

Plant

$$\dot{x_t} = f(x_t, u_t, t), \quad x_t \in \Re^n, u_t \in \Re^m$$

Model

$$\frac{d}{dt}\hat{x} = A\hat{x}_t + W_1\sigma(\hat{x}_t) + W_2\phi(\hat{x}_t)\gamma(u_t)$$

 $\hat{x} \in \Re^n$, $u \in \Re^k$. The matrix $A \in \Re^{n \times n}$ is a stable matrix. The matrices $W_1 \in \Re^{n \times m}$ and $W_2 \in \Re^{n \times m}$ are the weights output layers. $V_1 \in \Re^{m \times n}$ and $V_2 \in \Re^{m \times n}$ are the weights of hidden layers. $\sigma\left(\cdot\right) \in \Re^m$ is sigmoidal vector functions, $\phi(\cdot)$ is $\Re^{m \times m}$ diagonal matrix, i.e.,

$$\phi(\cdot) = \operatorname{diag}\left[\phi_1(V_2\hat{x})_1 \cdots \phi_m(V_2\hat{x})_m\right].$$

 $\sigma_i(\cdot)$ and $\phi_i(\cdot)$ are as sigmoid functions, i.e.

$$\sigma_i(x_i) = \frac{a_i}{1 + e^{-b_i x_i}} - c_i.$$

□ ▶ ∢□ ▶ ∢ ≣ ▶ √ ■ ♥ 9 Q (?)

Simplest case

The plant is

$$\dot{x} = f(x)$$

Continuous-time recurrent NN (series-parallel)

$$\frac{d}{dt}\hat{x} = A\hat{x} + W\sigma(x)$$

The nonlinear system is complete described by following neural network

$$\dot{x} = Ax + W^*\sigma(x)$$

The modeling error is

$$\Delta = \hat{x} - x$$

The error dynamic is

$$\dot{\Delta} = \frac{d}{dt}\hat{x} - \dot{x} = A\Delta + \tilde{W}\sigma(x)$$

where $\tilde{W} = W - W^*$

Lyapunov

Define Lyapunov function candidate as

$$L = \Delta^T P \Delta + \frac{1}{k} tr \left[\tilde{W}^T \tilde{W} \right]$$

then

$$\dot{L} = \dot{\Delta}^T P \Delta + \Delta^T P \dot{\Delta} + \frac{2}{k} tr \left[\left(\frac{d}{dt} \tilde{W} \right) \tilde{W} \right]$$

Using error dynamic $\dot{\Delta} = A\Delta + \tilde{W}\sigma(x)$

$$\dot{L} = \Delta^{T} \left(A^{T} P + P A \right) \Delta + 2 \Delta^{T} P \tilde{W}^{T} \sigma(x) + \frac{2}{k} tr \left[\left(\frac{d}{dt} \tilde{W} \right) \tilde{W}^{T} \right]$$

If A is stabel

$$A^T P + PA = -Q, \qquad Q = Q^T > 0$$

so

$$\dot{L} = -\Delta^T Q \Delta + \left[2\Delta^T P \sigma(x) + \frac{2}{k} \left(\frac{d}{dt} \tilde{W} \right) \right] \tilde{W}^T$$

(CINVESTAV-IPN) Intelligent Control October 17, 2024 22 / 35

Lyapunov

If we let

$$2\Delta^T P\sigma(x) + \frac{2}{k} \left(\frac{d}{dt} \tilde{W} \right) = 0$$

The leaning law is

$$\dot{W} = \frac{d}{dt}\tilde{W} = -k\Delta^T P\sigma(x)$$

then

$$\dot{L} = -\Delta^T Q \Delta$$

So $\Delta^T \in L_2 \cap L_\infty$, from the error dynamic, $\dot{\Delta} \in L_\infty$. Using Barlalat's Lemma, we have

$$\lim_{t\to\infty}\Delta=0$$

The plant is

$$\dot{x} = f(x, u)$$

Continuous-time recurrent NN (series-parallel)

$$\frac{d}{dt}\hat{x} = A\hat{x} + W_1\sigma(x) + W_2\phi(x)\gamma(u)$$

The nonlinear system is complete described by following neural network

$$\dot{x} = Ax + W_1^* \sigma(x) + W_2^* \phi(x) \gamma(u)$$

The error dynamic is

$$\dot{\Delta} = \frac{d}{dt}\hat{x} - \dot{x} = A\Delta + \tilde{W}_1\sigma(x) + \tilde{W}_2\phi(x)\gamma(u)$$

where $ilde{W}_1 = W_1 - W_1^* ilde{W}_2 = W_2 - W_2^*$

- 4 ロ ト 4 個 ト 4 種 ト 4 種 ト - 種 - からぐ

(CINVESTAV-IPN) Intelligent Control October 17, 2024 2

With control

Lyapunov function candidate as

$$L = \Delta^T P \Delta + \frac{1}{k_1} tr \left[\tilde{W}_1^T \tilde{W}_1 \right] + \frac{1}{k_2} tr \left[\tilde{W}_2^T \tilde{W}_2 \right]$$

then

$$\dot{L} = \dot{\Delta}^T P \Delta + \Delta^T P \dot{\Delta} + \frac{2}{k_1} tr \left[\left(\frac{d}{dt} \tilde{W}_1 \right) \tilde{W}_1^T \right] + \frac{2}{k_2} tr \left[\left(\frac{d}{dt} \tilde{W}_2 \right) \tilde{W}_2^T \right]$$

Using error dynamic $\dot{\Delta} = A\Delta + ilde{W}_1\sigma(x) + ilde{W}_2\phi(x)\gamma(u)$

$$\begin{split} \dot{L} &= -\Delta^T Q \Delta + \left[2\Delta^T P \sigma(x) + \frac{2}{k_1} \left(\frac{d}{dt} \tilde{W}_1 \right) \right] \tilde{W}_1^T \\ &+ \left[2\Delta^T P \phi(x) \gamma(u) + \frac{2}{k_2} \left(\frac{d}{dt} \tilde{W}_2 \right) \right] \tilde{W}_2^T \end{split}$$

With control

The leaning law is

$$\dot{W}_1 = -k_1 \Delta^T P \sigma(x)$$

 $\dot{W}_2 = -k_2 \Delta^T P \phi(x) \gamma(u)$

then

$$\dot{L} = -\Delta^T Q \Delta$$

Using Barlalat's Lemma, we have

$$\lim_{t\to\infty} \Delta = 0$$

The plant is

$$\dot{x} = f(x)$$

Continuous-time recurrent NN (series-parallel)

$$\frac{d}{dt}\hat{x} = A\hat{x} + W\sigma(\hat{x})$$

The nonlinear system is complete described by following neural network

$$\dot{x} = Ax + W^*\sigma(x)$$

The error dynamic is

$$\begin{split} \dot{\Delta} &= A\Delta + W\sigma(\hat{x}) - W^*\sigma(x) - W^*\sigma(\hat{x}) + W^*\sigma(\hat{x}) \\ &= A\Delta + \tilde{W}\sigma(\hat{x}) + W^*\sigma(\hat{x}) - W^*\sigma(x) \\ &= A\Delta + \tilde{W}\sigma(\hat{x}) + W^*\left[\sigma(\hat{x}) - \sigma(x)\right] \end{split}$$

(CINVESTAV-IPN) Intelligent Control October 17, 2024 27 / 35,

The function $\tilde{\sigma} = \sigma(\hat{x}) - \sigma(x)$ fulfill generalized Lipshitz condition

$$\left\|\sigma(\hat{x}) - \sigma(x)\right\|_{\Lambda_{\sigma}} = \tilde{\sigma}^{T} \Lambda_{\sigma} \tilde{\sigma} \leq \left(\hat{x} - x\right)^{T} D_{\sigma} \left(\hat{x} - x\right) = \Delta^{T} D_{\sigma} \Delta$$

Define Lyapunov function candidate as

$$L = \Delta^T P \Delta + \frac{1}{k} tr \left[\tilde{W}^T \tilde{W} \right]$$

then

$$\dot{L} = \dot{\Delta}^T P \Delta + \Delta^T P \dot{\Delta} + \frac{2}{k} tr \left[\left(\frac{d}{dt} \tilde{W} \right) \tilde{W} \right]$$

Using error dynamic $\dot{\Delta} = A\Delta + \tilde{W}\sigma(\hat{x}) + W^*\tilde{\sigma}$,

$$\begin{split} \dot{L} &= \Delta^T \left(A^T P + P A \right) \Delta \\ + 2 \Delta^T P \left[\tilde{W}^T \sigma(x) + W^* \tilde{\sigma} \right] + \frac{2}{k} tr \left[\left(\frac{d}{dt} \tilde{W} \right) \tilde{W}^T \right] \end{split}$$

(*) (*)

28 / 35

We use matrix inequality

$$X^T Y + (X^T Y)^T \le X^T \Lambda^{-1} X + Y^T \Lambda Y$$

where X, Y, $\Lambda \in \Re^{n \times k}$ and for any positive defined matrix $\Lambda = \Lambda^T > 0$, Becasue

$$2\Delta^T P W^* \tilde{\sigma} \leq \Delta^T P W^* \Lambda^{-1} W^{*T} P \Delta + \tilde{\sigma}^T \Lambda \tilde{\sigma} \leq \Delta^T \left(P \overline{W}_1 P + D_{\sigma} \right) \Delta$$

$$\begin{split} \dot{L} \leq \Delta^T \left(A^T P + P A \right) \Delta + \left[2 \Delta^T P \sigma(x) + \frac{2}{k} \left(\frac{d}{dt} \tilde{W} \right) \right] \tilde{W}^T \\ + \Delta^T \left(P \overline{W}_1 P + D_{\sigma} \right) \Delta \end{split}$$

with the leaning law is

$$\dot{W} = -k\Delta^T P \sigma(x)$$

Then

$$\begin{split} \dot{L} & \leq \Delta^{T} \left(PA + A^{T}P + P\overline{W}_{1}P + D_{\sigma} + Q_{0} \right) \Delta - \Delta^{T}Q_{0}\Delta \\ \dot{L} & \leq -\Delta^{T}Q_{0}\Delta + \Delta^{T} \left(A^{T}P + PA + PRP + Q \right) \Delta \end{split}$$

If A is stable, the pair $(A, R^{1/2})$ is controllable, the pair $(Q^{1/2}, A)$ is observable, and a local frequency condition

$$A^{T}R^{-1}A - Q \ge \frac{1}{4} \left[A^{T}R^{-1} - R^{-1}A \right] R \left[A^{T}R^{-1} - R^{-1}A \right]^{T}$$

is fulfilled, then the matrix Riccati equation

$$A^T P + PA + PRP + Q = 0$$

has a solution $P = P^T > 0$.

Then

$$\dot{L} \leq -\Delta^T Q \Delta \leq 0$$

Using Barlalat's Lemma, we have

$$\lim_{t\to\infty}\Delta=0$$

Unmodeled dynamics present

The plant is

$$\dot{x} = f(x)$$

Continuous-time recurrent NN (series-parallel)

$$\frac{d}{dt}\hat{x} = A\hat{x} + W\sigma(x)$$

The nonlinear system is complete described by following neural network

$$\dot{x} = Ax + W^*\sigma(x) + \Delta f$$

Error dynamic

$$\dot{\Delta} = \frac{d}{dt}\hat{x} - \dot{x} = A\Delta + \tilde{W}\sigma(x) + \Delta f$$

Define Lyapunov function candidate as

$$L = \Delta^T P \Delta + \frac{1}{k} tr \left[\tilde{W}^T \tilde{W} \right]$$

Using error dynamic $\dot{\Delta} = A\Delta + \tilde{W}\sigma(x) + \Delta f$.

$$\|\Delta f\|_{\Lambda}^2 = \Delta f^T \Lambda \Delta f \le \overline{f}$$

and

$$2\Delta^{T} P \Delta f \leq \Delta^{T} P \Lambda^{-1} P \Delta + \Delta f^{T} \Lambda \Delta f \leq \Delta^{T} P \Lambda^{-1} P \Delta + \bar{f}$$

then

$$\dot{L} \leq \Delta^{T} \left(PA + A^{T}P + P\Lambda^{-1}P + Q_{0} \right) \Delta - \Delta^{T}Q_{0}\Delta + \bar{f}$$

from the matrix Riccati equation

$$A^T P + PA + PRP + Q = 0$$

Unmodeled dynamics present

we have

$$\dot{L} \leq -\Delta^T Q_0 \Delta + \bar{f}$$

$$\dot{L} \leq -\Delta^{T} Q_{0} \Delta + \bar{f} \leq -\lambda_{\min} \left(Q_{0}\right) \left\|\Delta\right\|^{2} + \bar{f}$$

The learning law is

$$\dot{W} = -sk\Delta^T P\sigma(x)$$

where

$$s = \left\{egin{array}{ll} 1 & ext{if} & \left\|\Delta
ight\|^2 > rac{ar{f}}{\lambda_{\min}(Q_0)} \ 0 & ext{if} & \left\|\Delta_t
ight\|^2 \leq rac{ar{f}}{\lambda_{\min}(Q_0)} \end{array}
ight.$$

if $\|\Delta\|^2 > \frac{\tilde{f}}{\lambda_{\min}(Q_0)}$, with the updating law $\dot{L} < 0$. If $\|\Delta_t\|^2 \leq \frac{\tilde{f}}{\lambda_{\min}(Q_0)}$, W is constant. L is bounded.

4 ロ ト 4 個 ト 4 差 ト 4 差 ト 2 9 9 9 0 0

Unmodeled dynamics present

Integrating \dot{L} from 0 to T yields

$$L(T) - L(0) \le -\int_0^T \Delta^T Q_0 \Delta dt + T\overline{f}$$

SO

$$\frac{1}{T} \int_0^T \|\Delta\|_{Q_0}^2 dt \le \overline{f} + \frac{V_0}{T}$$

$$\lim_{T \to \infty} \int_0^T \|\Delta\|_{Q_0}^2 dt \le \overline{f}$$
(1)