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Backpropagation

Delta rule: Update of weights in output layer, it is not applicable to
hidden layer because we don�t know the desired values for hidden
nodes

Solution: Propagating errors from output nodes to hidden nodes

BACKPROPAGATION (BP) learning
Proposed �rst by Werbos (1974), current formulation by Rumelhart,
Hinton, and Williams (1986)
Error backpropagation can be continued downward if the net has more
than one hidden layer
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MultiLayer Perceptron (MLP)
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Gradient descent (steepest descent)

Delta rule
w (k + 1) = w (k)� ηe (k) u (k)

where
e (k) = y (k)� d (k)

where y (k) is neuron output, d (k) is the desired output, u (k) is the
input to the weight w (k).
Stochastic gradient descent (SGD): the instantaneous sum of the squared
output errors

J (k) =
1
2

l

∑
k=1

e2 (k)

Because ∂
w (k )J (k) only includes e (k),

w (k + 1) = w (k)� ηe (k) u (k)

In each iteration k, the gradient is only evaluated at a single eo (k) . This
is the key di¤erence between stochastic gradient descent and batched
gradient descent.
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Gradient descent

Gradient descent is a method for unconstrained mathematical
optimization. It is a �rst-order iterative algorithm.
If f (x) is di¤erentiable in a neighborhood of a point, then f (x) decreases
fastest if it goes from a in the direction of the negative gradient of f (x)
at a

a (k + 1) = a (k)� η5 f
until the local minimum

5f = 0
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Chain rule

For single layer NN
y (k) = w (k) u (k)

both w (k) and u (k) are vector, d (k) is the desired output,

e (k) = y (k)� d (k)

We want to move w (k) such taht J (k) decreases fastest,

J (k) =
1
2

n

∑
k=1

e2 (k)
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Chain rule

Gradient descent method is

w (k + 1) = w (k)� η5 J

where
5J = ∂J

∂w (k ) =
∂J

∂e(k )
∂e(k )
∂w (k )

= e (k) ∂[y (k )�d (k )]
∂w (k ) = e (k) ∂[w (k )u(k )�d (k )]

∂w (k )

= e (k) u (k)

So
w (k + 1) = w (k)� ηu (k) e (k)
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Chain rule

Single layer NN
y (k) = φ [w (k) u (k)]

5J = ∂J
∂w (k ) =

∂J
∂e(k )

∂e(k )
∂w (k )

= e (k) ∂[y (k )�d (k )]
∂w (k ) = e (k) ∂[φ[w (k )u(k )]�d (k )]

∂w (k )

= e (k) ∂[φ[w (k )u(k )]�d (k )]
∂[w (k )u(k )�d (k )]

∂[w (k )u(k )�d (k )]
∂w (k )

= φ0u (k) e (k)

So
w (k + 1) = w (k)� ηφ0u (k) e (k)
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Chain rule

Two-layer NN
y (k) = V (k) φ [W (k) u (k)]

J (k) =
1
2

n

∑
k=1

e2o (k) , eo (k) = y (k)� d (k)

here
5J = ∂J

∂vi (k )
= ∂J

∂eo (k )
∂eo (k )
∂vi (k )

= e (k) ∂[y (k )�d (k )]
∂vi (k )

= e (k) ∂[V (k )φ[�]�d (k )]
∂vi (k )

= e (k) φ [�]
Gradient descent method

vi (k + 1) = vi (k)� η5 J = vi (k)� ηe (k) φ [�]
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Chain rule

y (k) = W1 (k) φ1 [W2 (k) φ2 [W2 (k) φ3 � � � u (k)]]

Gradient descent

wij (k + 1) = wij (k)� η5 J = wij (k)� η
∂J (k)

∂wij (k)

where J (k) = 1
2 ∑n

k=1 e
2
o (k) , eo (k) = y (k)� d (k)
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Chain rule

Chain rule

J (k) =
1
2

n

∑
k=1

e2o (k) , eo (k) = y (k)� d (k)

∂J (k)
∂wij (k)

=
∂J (k)
∂eo (k)

∂eo (k)
∂uj (k)

∂uj (k)
∂yj (k)

∂yi (k)
∂wij (k)

∂J (k )
∂eo (k )

= eo (k) ,
∂eo (k )
∂uj (k )

= 1
∂uj (k )
∂yj (k )

=
∂φ[yj (k )]

∂yj (k )
= φ0j

∂yj (k )
∂wij (k )

=
∂[ui (k )wij (k )]

∂wij (k )
= ui (k)

So

5J = ∂J (k)
∂wij (k)

= eo (k) φ0ui (k)

then

wij (k + 1) = wij (k)� η5 J = wij (k)� ηeo (k) φ0jui (k)
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Chain rule

Chain rule

∂J (k)
∂wki (k)

=
∂J (k)
∂eo (k)

∂eo (k)
∂uj (k)

∂uj (k)
∂yj (k)

∂yj (k)
∂ui (k)

∂ui (k)
∂yi (k)

∂yi (k)
∂wki (k)

∂J (k )
∂eo (k )

= eo (k) ,
∂eo (k )
∂uj (k )

= 1
∂uj (k )
∂yj (k )

= φ0j
∂yj (k )
∂ui (k )

=
∂[ui (k )wij (k )]

∂ui (k )
= wij

∂ui (k )
∂yi (k )

= φ0i
∂yi (k )

∂wki (k )
= ∂[ui (k )wki (k )]

∂wki (k )
= uk (k)

So

wki (k + 1) = wki (k)� η
∂J (k)

∂wki (k)
= wki (k)� ηeo (k) φ0jwijφ

0
iuk (k)
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Backpropagation for MLP

wij (k + 1) = wij (k)� ηej (k) ui (k)
wki (k + 1) = wkj (k)� ηei (k) uk (k)

where
ej (k) = eo (k) φ0j
ei (k) = eo (k) φ0jwijφ

0
i
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Example
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Example

Feedforward propagation

O3 = σ3 (w13u1 + w23u2)
O4 = σ4 (w14u1 + w24u2)
O5 = σ5 (w15u1 + w25u2)
y1 = O6 = σ6 (w36O3 + w46O4 + w56O5)
y2 = O7 = σ7 (w37O3 + w47O4 + w57O5)
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Example

Backpropagation
eo1 = y1 � y �1
eo2 = y2 � y �2
e6 = eo1

�
σ6 = eo1

e7 = eo2
�
σ7 = eo2

e3 = e6
�
σ3w36 + e7

�
σ3w37

e4 = e6
�
σ4w46 + e7

�
σ4w47

e5 = e6
�
σ5w56 + e7

�
σ5w57

Learning

w36 (k + 1) = w36 (k)� ηO3 (k) e6 (k) = w36 (k)� ηO3 (k) eo1
...
w13 (k + 1) = w13 (k)� ηO1 (k) e3 (k)

= w13 (k)� ηu1 (k)
h
eo1

�
σ3w36 + eo2

�
σ3w37

i
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Backpropagation Improvement

Momentum (Rumelhart et al, 1986)

Adaptive Learning Rates (Smith, 1993)

Normalizing Input Values (LeCun et al, 1998)

Bounded Weights (Stinchcombe and White, 1990)

Penalty Terms (eg. Saito & Nakano, 2000)

Conjugant Gradient

Levenberg-Marquart (damped least-squares, non-linear least squares)
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BP with momentum

the change in weight dependent of the past weight change

wij (k + 1) = wij (k)� η
∂J (k)

∂wij (k)
+ α∆wij (k � 1)

Avoid sudden change of directions of weight update (smoothing the
learning process)

avoid oscillation at large learning rate, error is no longer
monotonically decreasing
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Problems of gradient descent

long training process (NN)

gradient decay (deep learning)

local minima (NN)

(CINVESTAV-IPN) Intelligent Control September 26, 2024 19 / 29



Local minimum.

local minimum. (E may not be reduced to zero) and cannot escape
from the local minimum

Not every function can be modeled by BP, depends on the shape of
the error surface. Too many valleys/wells will make it easy to be
trapped in local minima

Possible solutions:

Try nets with di¤erent # of hidden layers and hidden nodes (they may
lead to di¤erent error surfaces, some might be better than others)
Try di¤erent initial weights (di¤erent starting points on the surface)
Forced escape from local minima by random perturbation (e.g.,
simulated annealing)
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How good are MLP networks

1 The learning algorithm determines how good the error on the training
set is minimized.

2 The number of learning samples determines how good the training
samples represent the actual function. There is no theoretically idea
number

3 Then umber of hidden units determines the �expressive power�of the
network,
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Over-�tting/over-training problem

trained net �ts the training samples perfectly (E reduced to 0)

it does not give re�ect the inputs not in the training set

The target values may be unreliable.
There is sampling error. If the model is very �exible it can model the
sampling error really well.
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Over�tting

Which model do you believe?

The complicated model �ts the data better.

But it is not economical

A model is convincing when it �ts a lot of data surprisingly well.
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Possible solutions:

More and better samples, persistent exciting (PE), e.g., introducing
noise into samples

Using smaller net if possible

Using larger error bound (forced early termination)

leave some (~10%) samples as test data (not used for weight update)

periodically check error on test data

Learning stops when error on test data starts to increase
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Occam�s Razor

William of Ockham, a 14th-century English philosopher
Occam�s Razor is the problem-solving principle that recommends searching
for explanations constructed with the smallest possible set of elements.
The principle of simplicity and e¤ectiveness:

The simplest explanation is usually the best one.

If it is not necessary, do not increase the entity
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The number of learning samples
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The number of hidden units: over-training
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Samples and hidden units and vis error rate
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Batch mode

Weight update once per each epoch (cumulated over all P samples)

Smoothing the training sample outliers

Learning independent of the order of sample presentations

Usually slower than in sequential mode
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