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Types of NNs

Time domains
1 Discrete-time
2 Continuous-time

Structure

1 Feedforward
2 Recurrent

So

1 Discrete-time Feedforward: MLP
2 Discrete -time Recurrent: RNN
3 Continuous-time Feedforward: MLP
4 Continuous-time Recurrent: Di¤erential Neural Networks
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MLP
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RNN

Parallel form
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Deep RNN

Boltzmann machines

Long-short term memory (LSTM)
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Figure: Markov sampling in a restricted Boltzmann machine
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,

Alexander S Poznyak, Edgar N Sanchez & Wen Yu , Di¤erential Neural
Networks for Robust Nonlinear Control, World Scienti�c Publishing Co.,
2001
Dynamic NNDi¤erential NN
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Discrete-time recurrent neural networks
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Discrete-time recurrent neural networks

MLP

MLP
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Univeral approximation of Di¤erential Neural Networks

We use the Di¤erential Neural Network

d
dt
bx = Abx +WΦ [Vbx ]

to model a nonlinear system, A 2 Rn�n, W 2 Rn�m , V 2 Rm�n, x 2 Rn

ẋ = f (x)

Theorem
Suppose the dynamic system and the di¤erential Neural Network are
initially at the same state x0 = bx0. For any ε > 0 and any �nite T > 0,
there exists an integer m such that the state of di¤erential Neural Networkbxt with the weight [W �,V �] satis�es

sup
0�t�T

jxt � bxt j < ε (1)
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Univeral approximation of Di¤erential Neural Networks

The nonlinear system,can be expressed as

ẋ = Axt + f (x)� Axt = Axt + G (x)

where G (x) = f (x)� Ax
From Stone-Weierstrass theorem if the hidden layer V is large enough, the
neural network with one hidden layer

ŷ = WΦ [Vbx ]
can approximate any

y = G (x)

to any degree of accuracy,

sup
x
jG (x)�WΦ [Vx ]j � δ (2)

where δ is any small positive constant.
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Proof

Wen Yu, Nonlinear system identi�cation using discrete-time recurrent
neural networks with stable learning algorithms, Information Sciences,
Vol.158, No.1, 131-147, 2004.
Let us de�ne identi�cation error as

∆t = xt � bxt (3)

There exists an integer m and the weight [W �,V �] such that

.bxt = Abxt +W �Φ [V �x̂ ]

because
ẋ = Axt + G (x)

so �
∆t = A∆t + G (x)�W �Φ [V �bx ] (4)
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Proof

Since x0 = bx0, ∆0 = 0. The solution of the di¤erential equation

�
∆t = A∆t + G1

where G1 = G (x)�W �Φ [V �bx ]
∆t =

R t
0 e

A(t�τ)G1dτ

=
R t
0 e

A(t�τ) [W �Φ [V �x ]�W �Φ [V �x̂ ]] dτ

+
R t
0 e

A(t�τ) [G (x)�W �Φ [V �x ]] dτ

(5)
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Proof

Since A is a stability matrix, there exists a positive constant α such thateAt � e�αt , α > 0

So
j∆t j �

R t
0

eA(t�τ)
 kW �k fjΦ [V �x ]�Φ [V �bx ]jg dτ

+
R t
0

eA(t�τ)
 fjG (xt , ut )�W �Φ [V �x ]jg dτ

Using Lipschitz condition

jΦ [V �x ]�Φ [V �bx ]j � l jxτ � bxτj

and Stone-Weierstrass theorem

sup
(bx ,u) jG (x)�W �Φ [V �x ]j � δ (6)
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Proof

So
j∆t j �

R t
0 e

�α(t�τ)L jxτ � bxτj dτ +
R t
0 e

�α(t�τ)δdτ

=
R t
0 e

�α(t�τ)L j∆t j dτ + δ
α (1� e�αt )

where L := l kW �k . Because e�αt � 1, for αt > 0

j∆t j �
δ

α
+
Z t

0
e�α(t�τ)L j∆t j dτ
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Proof

For

j∆t j �
δ

α
+
Z t

0
Le�α(t�τ) j∆t j dτ

We use Gronwall-Bellman inequality, if

u � u0 +
Z
f (τ) u (τ) dτ

then
u � u0e

R
f (τ)dτ

But

u0 = L
δ

α

Z t

0

�
1� e�αt� e�α(t�τ)

j∆t j � δ
α + L

δ
α

R t
0 (1� e�αt ) e�α(t�τ)e

R t
τ Le

�α(t�s)dsdτ

= δ
α + L

δ
α

R t
0 (1� e�αt ) e�α(t�τ)e

L
α (1�e�α(t�τ))dτ

Because e�αt � 1, for αt > 0.
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Proof

Using the inequality of

1� e�x � x , x � 0

we have

j∆t j � δ
α + L

δ
α

R t
0 (1� e�αt ) e�α(t�τ)eL(t�τ)dτ

= δ
α + L

δ
α

R t
0 (1� e�αt ) (1� e�ατ) e(L�α)(t�τ)dτ

= δ
α +

(α�L)e�αt�αe�(α�L)t+L
α(α�L) δ

= δ
α +

h
1
αe
�αt � e�(α�L)t

(α�L) +
L

α(α�L)

i
δ

� δ
α +

h
1
α �

e (α�L)t
(α�L) +

L
α(α�L)

i
δ

= δ
α +

δ
α�L

h
1� e�(α�L)t

i
� δ

α +
δ

α�L =
(2α�L)
α(α�L)δ
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Proof

If we de�ne

ε :=
(2α� L)
α (α� L)δ

and select α � L, so ε > 0, j∆t j = jxt � bxt j � ε. From function
approximate theorem (2) we know δ can be any small. Because α and L
are constants, so ε can also be any small.
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Proof

If the initial condition of neural networks and dynamic system are di¤erent,
x0 6= bx0, The solution of the di¤erential equation (4) is

∆t =
Z t

0
eA(t�τ) [G (xτ, uτ)�W �ΦV � (bxτ, uτ)] dτ + ∆0eAt

The additional term ∆0eAt will in�uence the �nial result as

j∆t j �
(2α� L)
α (α� L)δ+

1
L
e�(α�L)t j∆0j .

Because (α� L) t > 0, l and ∆0 are constants

lim
t!∞

1
L
e�(α�L)t j∆0j = 0

So the in�uence of initial condition of RMLP will decay exponentially to
zero.
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Learning in Neural Networks

There are three broad types of learning:

Supervised Learning, learning with a teacher)

1 Classi�cation
2 Control
3 Function approximation
4 Associative memory

Unsupervised learning, learning without help)
1 Clustering

Reinforcement learning, learning with limited feedback
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Learning in biological systems as optimization

Learning = learning by adaptation

The young animal learns that the green fruits are sour, while the
yellowish/reddish ones are sweet. The learning happens by adapting
the fruit picking behavior. The animal likes to eat many energy rich,
juicy fruits that make its stomach full, and makes it feel happy.

At the neural level the learning happens by changing of the synaptic
strengths, eliminating some synapses, and building new ones

(CINVESTAV-IPN) Intelligent Control September 12, 2024 21 / 28



Learning principle for arti�cial neural networks

Maintaining synaptic strength needs energy, it should be maintained
at those places where it is needed, and it shouldn�t be maintained at
places where it�s not needed

ENERGY MINIMIZATION

We need an appropriate de�nition of energy for arti�cial neural
networks, and having that we can use mathematical optimization
techniques to �nd how to change the weights of the synaptic
connections between neurons.

ENERGY = measure of task performance error
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Unsupervised Learning

ANN adapts weights to cluster input data

Hebbian learning

Connection stimulus-response strengthened (Hebbian)

Competitive learning algorithms

Kohonen & ART
Input weights adjusted to resemble stimulus
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Shifting around Learning

we can think of learning as the process of shifting around the optimal
points until each training data is classi�ed correctly.

we need to formalize that process of �shifting around� into a
systematic algorithm that can easily be implemented on a computer.

w (k + 1) = w (k) + ∆w (k)

The �shifting around�can conveniently be split up into a number of
small steps.
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Hebbian learning

Hebbian learning (Unsupervised learning)

w (k + 1) = w (k) + ηŷ (k) u (k)

Perceptrons learning (supervised learning)

w (k + 1) = w (k) + η [y (k)� ŷ (k)] u (k)

There is some similarity, but it is clear that Hebbian learning is not going
to get our Perceptron to learn a set of training data. The are variations of
Hebbian learning that do provide powerful learning techniques for
biologically plausible networks, such as Contrastive Hebbian Learning, but
we shall adopt another approach for formulating.
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Delta Rule

We want to change the value of x to minimise f (x)
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Delta Rule

The Delta rule is presented by Widrow and Ho¤ in 1960 as LMS (least
mean square) learning procedure.
NN (Widrow�s Adaline) is

ŷ = ∑
i
wiui + b

We eant to adjust the weights to minimize the di¤erence between the
network output and the desired output. The error function

E (wi ) =
1
2

N

∑
k=1

[y (k)� ŷ (k)]2

The idea is to make a change in the weight proportional to the negative of
the derivative of the error as measured on the current data with respect to
each weight: gradient descent.
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Delta Rule

The weights are cahnged as

wnew = wold � η ∂E
∂w

∂E
∂wi
= ∂E

∂ŷi
∂ŷi
∂wi
= � [y (k)� ŷ (k)] ui

w (k + 1) = w (k) + ηe (k) ui

where e (k) = y (k)� ŷ (k)

y
1w

2w

1u

2u
∑

w1 (k + 1) = w1 (k) + η [y (k)� ŷ (k)] u1
w2 (k + 1) = w2 (k) + η [y (k)� ŷ (k)] u2
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