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NN for image Classification

Image size =1920 x 1080 X 3

First layer neurons = 1920 x 1080 X 3 ~ 6 million

Hidden layer neurons = Let's say you keep it ~ 4 million

Weights between input and hidden layer = 6 mil * 4 mil
=24 million
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Feature extraction
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Location invariant: It can detect eyes in any location of the image
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Features
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Convolution operation
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Feature extraction
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Convolution in discrete-time
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Convolution operation

@ Convolution produces the area amount of two overlap functions
@ multiplication of a original function and its translation.

h(t)=fxg= / g(t—1)dt

@ The output of a linear time-invariant system (LTI) is the convolution
of the input signal and the system (the impulse response) gives

@ In probability theory, the probability distribution of the sum of two
independent random variables is the convolution of their individual
distributions.

The distribution of the sum Z = X + Y of two independent discrete
variables is

P(Z=2z)=YP(X=k)P(y =z—k)
hz)=[2,f(t)g(z—1)dt

wheref (t) and g (t) are density functions
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Convolution: Local receptive fields

Every input pixel are not connected to every hidden neuron. Only localized
regions of the input image is sent to hidden layers.

A image with 28 x 28 pixels, only 5 X 5 region is activated, this region is
called the "local receptive field" for the hidden neuron.

input neurons
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@ 24 x 24 pixels are called "activation map", or feature map
(CINVESTAV-IPN)

@ the region which the filter passed called "receptive field"
@ The values of the elements of the filter called "weights"

Hidden layer has 28 — 5+ 1 = 24, 24 X 24 pixels, when step length is 1.
@ The 5 x 5 region is called: "filter", or neuron, or kernel

We can also move the local receptive field 2 pixels (step is 2)
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Convolution

The values of hidden neurons are

5 5
y=b+Y Y wix,
i=1j=1
where b is the shared value for the bias, w;; is a 5 x 5 array of shared
weights, x; ; denotes the input activation at position i, j
The convolution is regarded as local features extraction. If we need more
than one feature map, we need several different filters to convolute the
image.
28 X 28 input neurong firgt: hidden layer: 3 X 24 X 24 neurong

A

Training parameter:

(CINVESTAV-IPN) [ CNN for intelligent control June 20, 2023 12 / 50




Activation function:
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Activation function: RelLU

y = ¢<b+ZZW,JX,J>

i=1j

where ¢ is the neural activation function - perhaps the sigmoid function or
tanh.

Rectified linear unit (ReLU)

y = max lo, <b Yy W>]

i=1j=1
This activation function enables better training of deeper networks, the
most popular activation function for deep neural networks.
Convolutional networks are well adapted to the translation invariance of
images:

@ All the neurons in the first hidden layer detect exactly the same

feature
@ The weights and bias correspond a particular local receptive. field,
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Polling

Simplify the information from the convolutional layer. It is a condensed
feature map

hidden neurons {output from feature map)
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Polling

Shifted 9 at
different position
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Polling

Each unit in the pooling layer summarizes a region of 2 X 2 in the
convolutional layer. Many fewer pooled features, and so this helps reduce
the number of parameters needed in later layers. 24 x 24 — 12 x 12
Operation of the "summarization"

@ max-pooling: the maximum of the 2 X 2 input region: where a given
feature is found, then throws away the exact positional information.
Once a feature has been found, its exact location isn't as important

@ Ly pooling: square root of the sum of the 2 X 2 input region: is a way
of condensing information from the convolutional layer.

Xi
max(x;)

@ average:

17 / 50
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Fully-connected layer

28 % 26 Inpul, neyrons 9% 24 % 24 neyrony
Ax 12 % 13 neurons

-

If we want to classify 10 digits, they are 10 output neurons.
This layer connects every neuron from pooling layer to every one of the 10

output neurons.
There are 12 x 12 x 3 x 10 = 4, 320 weights

June 20, 2023 18 / 50

(CINVESTAV-IPN) CNN for intelligent control



CNN-structure
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Properties of CNN

Q local receptive fields
@ shared weights
© pooling
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Properties of CNN: sparse Connectivity - local receptive

fields

layer m+|
layer m

layer m-|
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Properties of CNN: Shared weights

(CINVESTAV-IPN) CNN for intelligent control June 20, 2023 22 / 50



Why does the convolutional neural network have higher

accuracy

Machine learning is largely about two things

@ Optimization: How you fit your model to the data

e Trade-offs: Precision/recall;
Bias/variance;Powerful /interpretable; Complexity /training speed/data
needed
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Advantage of CNN

CNNs utilize the spatial information, weight sharing to reduce number
of parameters

Each convolutional kernel scans the entire input feature map to
produce an output map: a feature is the same no matter where in the
receptive field that feature is located. This means they learn more
meaningful features

Pooling builds up tolerance to severe distortions, such as lens
distortions, camera view angle. This pooling takes place at multiple
levels, the low-level features are allowed to shift. This makes the
CNNs very robust.

Context: Spatial pooling also makes the receptive fields larger and
hence context gets to be increasingly considered after each pooling
operation. Hence at high-level layers, the receptive fields will include
a huge area of the input stimuli such as an image. It is a well known
fact that context improves performance in many recognition tasks.
Hierarchical feature learning.
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Training

Convolutional

Convolutional Soft-max
layer2 layer

— Convolutional Convolutional ®
: 6 ~ layer3 layerd ~
g 160
| By
1 P 20 <
Input layer 2 Max-pooling Max-pooling Max-pooling
layerl layer2 layer3 Deep hidden @
Identity features @
(DeepID) n
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e%

Y=o, 9@ =Fo

y = ¢ (z) is probability of z;. The loss function of soft-max (Cross
Entropy) is

n

J= %Z[y/ log pi + (1 — y;) log (1 — pi)]

where p; is the probability of y;
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Training process

@ Full connection layer
@ Convolution layer

© Polling layer
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Training error

If the pattern x (k) belongs to the class 7, for simple case the class is
yi (k). The i—th element of the output y; (k), the training number is
k=1--- /N

10 N )
L)Ll (k)]
=1 k=1
y (k) depends on the choice of the output activation function (soft-max).
For the individual errors on each pattern i
N

Ji=Y i (k) = 5 (k)]

k=1
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Full connection layer training

Gradient for "Full connection"
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Full connection layer training

where
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Convolution layer: feedforward

W, b,

x+1 x+1

OO
s)ﬂ-‘

Feedforward calculation (feature map),

5 5
y=¢ <b+ Y W,-,jx,-,j) =¢ <b+ ) W,-,jx,-,j> =WX+b

i=1j=1 ijeM

where ¢ is the active function (ReLU), w;; b also called kernel and bias.
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Convolution layer: feedforward

di1 di1z di3

W11 W12 Z11 | Z12
dxz1 d22 as * -
W21 W22 221 | Z22

d31 d32 da3

Input Kernal Output

z11 = wiia11 + wiain + worao + wapax + b
z10 = wi1a12 + W12a13 + Wo1ax + waoaxz + b

some gradients are

9J dzi1 __
dain a211 9a; Wil

9 __ 9J 9dzin 9J 9z1p __

daip a211 9a1; T 9z 9an | cen W12 + €z, W11
o __ 9J dzi1 9J 0z1p + dJ 9z1 | 9J 9z
aazg - azu av 8212 8222 8221 8322 8222 8322
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Convolution layer training: BP

oljofofo
d11 di1z2 di3
O |zu)z2]1 O
d21 d22 423
0 |zn)z2| O
d31 d32 ds33
<«bp— |O0]O0]O]oO
Delta-out Kernal(rot180) Delta-in

aJ _
Ty = W22 T €z, W1 F €z, W12 + €7, W1

— Z11W22 + Zi2Wo1 + 221 W12 + Zoo Wi
The error is propagated as: the original kernel W is rotated by 180

degrees, and then do the convolution operation.
In the corner the padding is needed (fill zero in corners)
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Convolution layer training: BP

The error in the convolution layer is propagated as

R . rot
€out = €in x W

W (k+1) = W (k)

It can be regarded as

di1 di12 di3

d21 d22 4d:23

d31 d32 dz23

Input

9
Taw

(180)

211 | Z12

21 | Z22

Delta-in

So the convolution layers updated as

W (k+1) = W (k) — nAej, * W80

(CINVESTAV-IPN)
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W (k) — nAeout

W11 Wiz

W21 W22

Delta-Filter
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Polling layer training

Max Pooling Average Pooling

Maximum pooling, the error will be propagated to the position of the
original maximum value, and the other positions are all 0.

Average pooling, the error are propagated to all position with the averaged
values.

0.25 0.25 05 05
0.25 0.25 0.5 05
075075 1 1

075075 1 1

Max Pooling Average Pooling
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Polling layer training

Max pooling: if
y =max(a b, c,d)=0b

€out,a = 0, €out,b = €iny» eout,c = 0,, €out,d = 0
Average pooling: if
yz%(a—f—b—l—c—f—d)
1 1 1 1
€out,a = Zein' €out,b = Zein” €out,c = Zeinn €out,d = Zein

Up-sampling of average pooling is

€out = UP [ein]: up (Z) =zQ1loxm

where ® is the Kronecker product.
No parameter gradient, only error propagation
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Application of CNN: nonlinear system identification

Consider the following unknown discrete-time nonlinear system

y(k) =T [x (k)]

where

x(k)=[y(k=1), -y (k=ny) u(k),--u(k=n)]" (1)

Simulation model (parallel)

also

J(k) = Ng(k=1),--- gk =m),u(k),--- u(k=n)]  (3)

Prediction model (series-parallel)

Jk) =Ny (k=1),---y(k=m),u(k),-- u(k=n)]  (4)
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CNN structure

maxpool maxpool

9()

0]

Laal

Convolution  Subsampling ~ © i Fulli

Figure: CNN model for system identification
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CNN structure

y (k) = V@ [x (k)] (5)

the convoluted output is

p
z=xxWj zzg=) x[plg—1)+klwjlk], z=[zz1 zzy_p)]

k=1
(6)
we use the rectified linear unit (ReLU)
Z (k) =max|[0,z(k)], z={[z1-- 2z (7)
For system identification,
xo (k) = max[Z (k) , s] (8)

p

where s is the shrink parameter
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@ In the pre-training, the weights of the convolutional filters Wj; are
randomly assigned first, then we use a small dataset and the
Backpropagation of CNN to update them.

@ In the fine tuning, the weights of the convolutional filters are fixed as
the values of the pre-training, we only update the weight V' in the last
layer.
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Figure: The scheme of the system identification with CNN
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The error is back-propagated to the layer m as

o0
ot
where o is the active function of the full connection layer. Here we use
linear function, %—‘; =1,

For each CNN cell, we need to update the filter weight Wj; in (6)

em (k) = eo (k) 22V = e, (k) V (K) (11)

(k+1) 0 (k) aJ
Wij = VVij - 178W,--

where J is defined in (9).
For m—th CNN cell
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In the max-pooling,
emp (k) = up [en (K)]

When the error en,, goes through the convolution operation
eme = emp * W;
we use discrete-time de-convolution

eme = €emp * [rot180 (Wj)]
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em—1 = up [em (k)] * [rot180 (Wj)] (12)

For any CNN cell, the training law of the filters is

Wi = Wil (k) e (k

ij

)
e (k) = up [ej41 (k)] * [rot180 (Wy)] (13)
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The object to train the weight V is
= mmZHy y(k)|1? (14)

where
y (k) = Ve [x (k)]
The training data are y (k) and ® [k].
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Consider all data k =1--- N,

Y=[Vvo(@l) - VO(N) |=VvY (15)
Y= VO(1)+e(l) -+ VO(N)+e(N) |

where e, (k) is the modeling error which defined. (15) in matrix form is
Y=VY+E (16)

where E = [e, (1), , e (N)]. (16) is a linear-in-parameter system.
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When .
V=vyeT (‘I"I’T> = vyt (17)

where ¥ is the pseudoinverse of ¥
J= m'"Z Ly (k) = 5 (k)II? (18)

arrives the minimum value.
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CNN training

In each convolutional layer, there are n filters, the convoluted output is

p
z=xxWj, z=lzz1---zzn_p], zzg= ) x[p(q—1)+ k] w; [K]
k=1
(19)
where p is the filter length, N is the length of x (k),
z (k) = [zz1 - - - zzy—p) is the feature map generated in this layer.
Linear unit (ReLU) as
Z (k) =max|[0,z(k)], z={[z1-" 2z (20)
We use the max-pooling method in the sub-sampling layer
xo (k) = max[Z (k) , s] (21)
p

where s is the shrink parameter, which depends on the layer, x> (k) is a
new input for the second convolutional layer
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Frequency domain

If we use discrete Fourier transform (DFT), the convolution operation in
(6) can be transformed into multiplication,

FxsW)=F(x)x F(W)=F (x)F (W) (22)

where F represents the DFT for the corresponding vector, * represents the
convolution operation, F (x) and F (W) are vectors in the frequency
domain, X represents element-wise product.
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Optimal input for random filters

Theorem

The input data x (k), k =1--- N, pass through the filter
Wi = [wj (1), ---wjj (p)], p < N. There is the optimal input, which
maximizes the CNN cell with the ReLU and the max-pooling as

x* (k) = 2= cos (2LNf°k+rp) (23)

where fy is the optimal frequency, ¢ is the phase. .

@ This theorem shows that for any inputs (random or determined), it
corresponds to the optimal filter. The frequency of the optimum
input is the frequency of maximum magnitude in the filter.

@ Any random filter containing some frequencies of moderate magnitude
can generate the maximum magnitude of the best input frequency.
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