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Unsupervised learning

One object of Deep Learning: extract features automatically.
We have no-lable data x1 (k) � � � xn (k) , but want to �nd the latent
(hidden features) inside x (k)

(λ1 � � � λm) = PCA [x (k)]

But if we use
z = f (x) , x̂ = f �1 (z)

then
x̂ = f �1 [f (x (k))] = x (k)

So the maong F is regarded as a representation of the input x (k)
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Autoencoder structure
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Autoencoder structure

encoder: input layer ! hidden layer

z = f (x) = φf (Wx)

decoder: hidden layer ! output layer

x̂ = g (z) = φg (Vz)

φf and φg can be sigmoid functions, to simplify the computation (tied
weights)

V = W T

decrease dimension
m < n

When φf is a linear function, autoencoder becomes PCA
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Unsupervised learning
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Autoencoder training

The object: we hope the decoded variable y can approximate the
original variable x , although it is encoded into h.

De�ne the reconstruction errors as

squared error: e (k) = kx (k)� x̂ (k)k2
cross entropy: e (k) = ∑n

i=1 [xi log (x̂i ) + (1� xi ) log (1� x̂i )]

Loss functions

Average: L =
1
N

N

∑
k=1

je (k)j , min
θ
L = ∑

x2S
e (x , g [f (c)])

where the training data are x (1) � � � x (N) 2 S , θ = [W , p, q]
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Regularized autoencoder

Auto-encoder may perfectly construct the input without extracting any
useful features. For example f (x) = x , or m >> n (over-complete
setting).
The loss functions should be modi�ed.
L1 regularied (Lasso)

L = ∑
x2S

e (x , g [f (x)]) +∑
ij
jwij j

L2 regularied (Ridge)

L = ∑
x2S

e (x , g [f (x)]) + λ ∑
ij
w2ij

where W = [wij ], λ is the weigh decay factor
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Training

BP algorithm

∆W (k + 1) = �η
∂L

∂W (k)

can be used.
LS version

W (k) =
�
XTX + λI

��1
XTY
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Boltzmann Machines

Geo¤rey Hinton and Terry Sejnowski in 1985

stochastic

bi-direction network

1 Boltzmann machines with unconstrained connectivity have not proven
useful for practical problems in machine learning or inference

2 if the connectivity is properly constrained, the learning can be useful
for practical problems
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Restricted Boltzmann Machines

Undirected graphical model of the Restricted Boltzmann Machine (RBM)
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RBM structure

no links between units of the same layer, only between input (or
visible) units xj and hidden units hi . All hidden nodes are independent
when the input nodes are known,

p (h j x) =
n

∏
i=1
p (hi j x)

all visible nodes are independent when the hidden nodes are known

p (x j h) =
m

∏
j=1
p (xi j h)

all nodes have values of 0 or 1
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RBM structure

all x and h satisfy Boltzmann distribution (Gibbs distribution):

p (x) ∝ e�
E
kT

where E is state energy, and k is the Boltzmann�s constant, T is the
thermodynamic temperature.

The distribution shows that states with lower energy will always have
a higher probability of being occupied than the states with higher
energy (more random).

The quantitative relationship between the probabilities of the two
states being occupied

pi
pj
= e�

Ei�Ej
kT
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RBM encode

Input (x1 � � � xm) after RBM encoded become (h1 � � � hn) , i�th node
in hidden layer, the probability of 1 is

p (hi = 1 j x) = φ [Wx + c ]

where φ is a sigmoid function

How to calculate get hi , if φ [Wx + c ] = a, a 2 (0, 1)

hi =
�
1 a < p (hi = 1 j x)
0 a � p (hi = 1 j x)

If φ [Wx + c ] = p (hi = 1 j x) = 0.85 means the probability of hi = 1
is 0.85.
Or when x is a random number between 0 and 1, it has 85% in
(0, 0.85). So when the random number is in (0, 0.85), i.e.,
a < p (hi = 1 j x), the event occurs, hi = 1
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Energy-based models

The energy of RBM is de�ned as

E (x , h) = �
n

∑
i=1

m

∑
j=1
wijxjhi �

m

∑
j=1
bjxj �

n

∑
i=1
cihi

wij are the weights associated with the connection between hidden unit hi
and visible unit xj
bj are the bias weights for the visible units xj
ci are the bias weights for the hidden units hi
The energy depends on each node and connection
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Energy-based models

The joint probability of visual node and the hidden node is

p (x , h) =
e�E (x ,h)

Z
� 1

where the normalizing factor Z is called the partition function

Z = ∑
x ,h

e�E (x ,h)

It is Boltzmann distribution.
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Training error

The distance (di¤erence) from the probability distribution of RBM p (x) ,
to the probability distribution of the input q (x) is de�ned as

KL (p, q) = ∑
x
q (x) log

q (x)
p (x)

WHERE KL (p, q) is the the Kullback-Liebler divergence, so

KL (p, q) = ∑
x
q (x) log q (x)�∑

x
q (x) log p (x)

the �rst term ∑x q (x) log q (x) is entropy of x ,
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Training error

The second term cannot be obtained directly, should be estimated by
Monte Carlo method, or estimated by

∑
x
q (x) log p (x) � 1

l ∑
x2X (l)

log p (x)

where l is selected samples.
Now

minKL (p, q) = min
�
∑
x
q (x) log q (x)�∑

x
q (x) log p (x)

�
! max∑

x
log p (x)

If RBM have some random states (x , h), the probability in visual node
arrives maximum from h to x process, i.e., the error arrive minimum
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Monte Carlo Sampling Methods

∂L (θ)
∂θ

= ∑
v

∂ log p (v)
∂θ

θ (k + 1) = θ (k)� η
∂ [� log p (x)]

∂θ (k)

where θ = [W , b, c ]
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Training

∂L(θ)
∂wij

= ∑v p (hi = 1 j v) vj �∑v
1
l ∑l

k=1 p (hi = 1 j vyk ) vyk ,j
∂L(θ)

∂bj
= ∑v vj �∑v

1
l ∑l

k=1 vyk ,j
∂L(θ)

∂ci
= ∑v p (hi = 1 j v)�∑v

1
l ∑l

k=1 p (hi = 1 j vyk )

∑v vj and ∑v p (hi = 1 j v) mean to summarize all input samples
∑v

1
l ∑l

k=1 vyk ,j means to summarize l output samples
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LSTM (Long Short Term Memories)

Long-Term Dependencies

RNNs can learn to use the past information, where the gap between
the relevant information and the place are small.

In theory, RNNs are absolutely capable of handling such �long-term
dependencies�by picking parameters.

In practice, RNNs don�t seem to be able to learn them.

The vanishing gradient problem for RNNs
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Long Short Term Memory networks

LSTM (Long Short Term Memories) is a special type of recurrent neural
network structure, its hidden layer has a special structure. By introducing
a gating mechanism to solve the gradient vanishing problem of RNN, it
can learn long-distance dependencies.
In theory, RNNs can indeed connect long-term dependencies and solve such
problems. But unfortunately in practice, RNNs cannot solve this problem.
Hochreiter (1991) and Bengio, et al. (1994) have studied this problem in
depth and found that RNNs are indeed di¢ cult to solve this problem.
S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural
computation, Vol.9, No.8, 1997
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LSTM

LSTM don�t have this problem, because it has special cell to remember
them

1 Sepcial design to avoid the long-term dependency problem
2 Capable of learning long-term dependencies
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LSTM-feedforward

Finally

yk = σ (WO ,k [yk�1, uk ]) tanh (xk )

where

xk = σ (WF ,k [yk�1, uk ]) xk�1 + σ (WI ,k [yk�1, uk ]) tanh (WX ,k [yk�1, uk ])
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Recurrent neural network (RNN)

LSTM is a recurrent neural network (RNN)

A RNN can be thought of as multiple copies of the same network,
each passing a message to a successor

RNNs are related to sequences and lists. The architecture of RNN is
suitable for such data.
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RNN

Connecting previous information to the present task depends many factors:
gap length.
As the gap grows, RNNs become unable to learn to connect the
information
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LSTM-structure

1) Cell state c (keep LongTerm Memory),while RNN only has hidden state
h (keep Short Term Memory)
2) Gate is a way to let information through. LSTM has three gates to
protect and control the cell state: forget gate, input gate, output gate

C(k­1) C(k) C(k+1)

h(k)

Input gate

Output gateForget gate
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LSTM

The transfer of cell state is like a conveyor belt, with vectors passing
through the entire cell, with only a few linear operations. This structure
makes it easy to pass information through the entire cell without changing
it. (Achieving long-term memory retention)
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Forget gate

It looks at hk�1, xk , and outputs a number between 0 and 1 for each
number in the cell state Ct�1.
1 represents �completely keep this�while 0 represents �completely get rid
of this.�

ft = σ (Wf [ht�1, xt ]) ,
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Input gate

For information store, to decide what new information we�re going to store
in the cell state. This has two parts

1 a sigmoid layer called the �input gate layer�decides which values
we�ll update.

2 a tanh layer creates a vector of new candidate values, C̃t , that could
be added to the state.

ik = σ (Wi [ht�1, xt ])
C̃t = tanh (Wc [ht�1, xt ])
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Cell update

We multiply the old state Ct�1 by ft , forgetting the things we decided to
forget earlier. Then we add it C̃t . T

Ct = ftCt�1 + it C̃t ,
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Output gate

This output will be based on our cell state, but will be a �ltered version.

1 we run a sigmoid layer which decides what parts of the cell state
we�re going to output.

2 we put the cell state through tanh (to push the values to be between
-1 and 1 ) and multiply it by the output of the sigmoid gate,

We only output the parts we decided to.

ot = σ (Wo [ht�1, xt ])
ht = ot tanh (Ct )
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LSTM

ft = σ (Wf [ht�1, xt ])
ik = σ (Wi [ht�1, xt ])

C̃t = tanh (Wc [ht�1, xt ])
Ct = ftCt�1 + it C̃t
ot = σ (Wo [ht�1, xt ])
ht = ot tanh (Ct )

So
ht = σ (Wo [ht�1, xt ]) tanh (Ct )

where

Ct = ftCt�1 + it C̃t
= σ (Wf [ht�1, xt ])Ct�1 + σ (Wi [ht�1, xt ]) tanh (Wc [ht�1, xt ])
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LSTM

Finally

yk = σ (WO ,k [yk�1, uk ]) tanh (xk )

where

xk = σ (WF ,k [yk�1, uk ]) xk�1 + σ (WI ,k [yk�1, uk ]) tanh (WX ,k [yk�1, uk ])
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GRU

Gated Recurrent Unit (GRU), Cho, et al. (2014).
It combines the forget gate and the input gate into a single �update gate.�
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GRU

1) Forget gate:
Fk = σ (WF ,k [yk�1, uk ])

2) Input gate:
Ik = σ (WI ,k [yk�1, uk ]I )
x̃k = tanh (WX ,k [yk�1, uk ])
xk = Fkxk�1 + Ik x̃k

So

yk = yk�1 + σ (WF ,k [yk�1, uk ]) (tanh (WX ,k [Ikyk�1])� yk�1)

It merges the cell state and hidden state. GRU is simpler than standard
LSTM models.
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LSTM
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LSTM modi�ed

Use coupled forget and input gates. We only forget when we�re going to
input something in its place.
We only input new values to the state when we forget something older.

xk = Fkxk�1 + (1� Fk ) x̃k
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LSTM-modi�ed

Depth Gated RNNs by Yao, et al. (2015)
Clockwork RNNs by Koutnik, et al. (2014).

Gre¤, et al. (2015) do a nice comparison of popular variants, �nding
that they�re all about the same.

Jozefowicz, et al. (2015) tested more than ten thousand RNN
architectures, �nding some that worked better than LSTMs
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LSTM-pinhole model
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LSTM-modi�ed

"peephole connections: the gate layers receive cell state

Fk = σ (WF ,k [xk�1, yk�1, uk ] + bf )
Ik = σ (WI ,k [xk�1, yk�1, uk ] + bI )
Ok = σ (WO ,k [xk�1, yk�1, uk ] + bO )
x̃k = tanh (WX ,k [yk�1, uk ] + bx )
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LSTM in the form of system
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GRU

σ

σ

GRU
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Training of RNN

Recurrent NN -> feedforward NN
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Unfoled

Recurrent cell

y (k) = V2 (k) x (k)
x (k) = φ [W (k) x (k � 1) + V1 (k) u (k)]

It can be unfoled into m steps

...
y (k �m) = V2 (k) x (k �m)
x (k �m) = φ [W (k) x (k �m� 1) + Vm (k) u (k �m)]
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Graident

Backpropagation Through Time (BPTT)
y � (k) is the desired output, the instantaneous of the squared output
errors is

J (k) =
1
2
[y (k)� y � (k)]2 = e2o (k)

The gradient decent is

w (k + 1) = w (k)� η
∂J (k )
∂w (k )

∂J
∂w = ∑m

k=1
∂J

∂w (k )
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Training of output layer

So

V2 (k + 1) = V2 (k)� η
∂J (k)

∂V2 (k)

Because y (k) = V2 (k) x (k)

∂J (k )
∂V2(k )

= ∂J (k )
∂eo (k )

∂eo (k )
∂y (k )

∂y (k )
∂V2(k )

= eo (k)� 1� x (k)

V2 (k + 1) = V2 (k)� ηeox (k)
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Training of input layer

So

V1 (k + 1) = V1 (k)� η
∂J (k)

∂V1 (k)

Because y (k) = V2 (k) x (k) , p = V1 (k) u (k) +Wx (k � 1)

∂J (k )
∂V1(k )

= ∂J (k )
∂eo (k )

∂eo (k )
∂y (k )

∂y (k )
∂x (k )

∂x (k )
∂p(k )

∂p(k )
∂V1(k )

= eo (k)� 1� V2 (k)� φ0 � u (k)

V1 (k + 1) = V1 (k)� ηeo (k)V2 (k) φ0u (k)
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Training of hiden ayer

∂J (k )
∂W = ∂J (k )

∂eo (k )
∂eo (k )
∂y (k )

∂y (k )
∂x (k )

∂x (k )
∂p(k )

∂p(k )
∂W

= eo (k)� 1� V2 (k)� φ0 � x (k � 1)

W (k + 1) = W (k)� ηeo (k)V2 (k) φ0x (k � 1)
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Training of varios inputs

Similar
e1 (k) = eo (k)V2 (k) φ0

V1 (k + 1) = V1 (k)� ηe1 (k) u (k)
W (k + 1) = W (k)� ηe1 (k) x (k � 1)

e2 (k) = e1 (k)W (k) φ0

V1 (k + 1) = V1 (k)� ηe2 (k) u (k � 1)
W (k + 1) = W (k)� ηe2 (k) x (k � 2)
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Backpropagation Through Time (BPTT)

Finally
V1 (k + 1) = V1 (k)� ηe1 (k) u (k)
V1 (k) = V1 (k � 1)� ηe2 (k) u (k � 1)
V1 (k � 1) = V1 (k � 2)� ηe3 (k) u (k � 2)

e1 (k) = eo (k)V2 (k) φ0

e2 (k) = e1 (k)W (k) φ0

e3 (k) = e2 (k)W (k) φ0

W (k + 1) = W (k)� ηe1 (k) x (k � 1)
W (k) = W (k � 1)� ηe2 (k) x (k � 2)
W (k � 1) = W (k � 2)� ηe3 (k) x (k � 3)
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Backpropagation Through Time (BPTT)

So
W (k + 1) = W (k)� η ∑M

i=1 ei (k) x (k � i)
V1 (k + 1) = V1 (k)� η ∑M

i=1 ei (k) u (k � i + 1)
V2 (k + 1) = V2 (k)� ηeox (k)

where
ei (k) = ei�1 (k)W (k) φ0

If kW (k) φ0k > 1, it is gardient blow up. If kW (k) φ0k < 1, it is gardient
vanish. We need to add a constraint as

when


W (k) φ0



 � 1, the layer is actived
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GRU
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GRU Training

Recurrent part
yk = yk�1 � Fkyk�1 + Fk ỹk

Feedforward part
Fk = σ (WF ,k [yk�1, uk ])
ỹk = φ (WX ,k [Ikyk�1, uk ])
Ik = σ (WI ,k [yk�1, uk ])

In state space

xk = xk�1 � σ (WF ,k [xk�1, uk ]) xk�1
+σ (WF ,k [xk�1, uk ]) φ (WX ,k [σ (WI ,k [xk�1, uk ]) xk�1])
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Training-recurrent NN

J (k) = 1
2 [y (k)� d (k)]

2 = e2i (k)
W (k + 1) = W (k)� η

∂J (k )
∂W (k )

If
y (k) = φ [W (k) y (k � 1) + V1 (k) u (k)]

BPTT is

W (k + 1) = W (k)� η ∑M
i=1 ei (k) y (k � i)

V1 (k + 1) = V1 (k)� η ∑M
i=1 ei (k) u (k � i + 1)

ei (k) = ei�1 (k)W (k) φ0
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Training-GRU

For WF ,k , because

yk = yk�1 � σ (WF ,k [yk�1, uk ]) yk�1 + Fk ỹk

BPTT

WF (k + 1) = WF (k)� η ∑M
i=1 eF (k) [yk�i , uk�i ]

eF (k) = eF�1 (k)WF (k) σ0yk�i

or

WF (k + 1) = WF (k)� ησ0
M

∑
i=1
eF�1 (k)WF (k) [yk�i , uk�i ]
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Training-GRU

For WX and WI ,

yk = yk�1 � Fkyk�1 + Fkφ (WX ,k [σ (WI ,k [xk�1, uk ]) xk�1])

BPTT

WX (k + 1) = WX (k)� η ∑M
i=1 eX (k) [Ikyk�1, uk ]

eX (k) = eX�1 (k)WX (k) φ0σ (WF ,k [yk�1, uk ])
WI (k + 1) = WI (k)� η ∑M

i=1 eI (k) yk�1
eI (k) = eI�1 (k)WX (k) φ0σ0σWI (WF ,k [yk�1, uk ])
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LSTM for nonlinear system identi�cation

y(k) = Φ [y (k � 1) , � � � , y (k � ny ) , u (k) , � � � , u (k � nu)] (1)

Simulation model,

ŷ(k) = F [u (k) , � � � , u (k � n)] (2)

ŷ(k) = N [ŷ(k � 1), � � � , ŷ(k �m), u (k) , � � � , u (k � n)] (3)

It is the parallel identi�cation model.
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Structure

LSTM
1,1

LSTM
1,2

LSTM
1,q

LSTM
p,1

LSTM
p,2

LSTM
p,q

NN
( )ku ( )kŷ

Figure: LSTM for nonlinear system modeling

(CINVESTAV-IPN) Unspuervised learning, Long Short Term Memory (LSTM), TransformerDecember 4, 2024 58 / 73



GRU

σ

σ
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Structure

e (k) = ŷ (k)� y (k)
The dynamic of the GRU is

xk+1 = xk �σ (W1xk +Wuuk ) xk +σ (W1xk +Wuuk ) φ (W2 [σ (W3xk ) xk ])

The GRU can be transformed into two parts: RNN and FNN (feedforward
NN)

RNN: x (k + 1) = Ax (k)� σ [W1x (k) +Wuu (k)] ũ (k)
FNN: ũ (k) = φ (W2σ [W3x (k)] x (k)) + x (k)

(4)
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Structure

Theorem
For the feedforward part of GRU, FNN, the following backpropagation-like
algorithm can make identi�cation error eF (k) bounded

W2,k+1 = W2,k � ηkeF (k) φ0x2 (k) σ
W3,k+1 = W3,k � ηkeF (k) φ0σ0W2,kx2 (k)

(5)

where ηk =
η

1+ kφ0x2 (k) σk2 + kφ0σ0W2,kx2 (k)k2
. The average of the

identi�cation error satis�es

J = lim sup
T!∞

1
T

T

∑
k=1

e2F (k) �
η

π
δ̄1 (6)

where π =
η

1+ κ

�
1� κ

1+ κ

�
> 0,

κ = max
k

�

φ0x2 (k) σ


2 + 

φ0σ0W2,kx2 (k)



2� , δ̄1 = max
k

�
δ21 (k)

�
,
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Structure

mŷ
1,mx

omx ,

m
knx ,

n

1,nx

lnx ,

nŷ
me

ne
ŷ

Figure: Error backpropagation

The performance index is de�ned as

J =
1
2
e20 eo = ŷ � y , ŷ = φ [WN ,k ŷi ]

em =
∂σ

∂t
wuen (7)

the training law is the gradient descent

WN (k + 1) = WN (k)� ηŷi ,q (k) eo (k) (8)
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Positional Encoding

Seq2seq
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,

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N. Gomez, Lukasz Kaiser, Illia PolosukhinAttention Is All
You Need, Neural Information Processing Systems, 2017

The problem of RNN
Input series fa1, a2, a3, a4g , the output serries fb1, b2, b3, b4g . If we want
b3 we need to input fa1, a2, a3g , we cannot obtain all b1, b2, b3, b4 at the
same time.
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Parallel

One solution is to us �lters (CNN)

Parallel serires fb1, b2, b3, b4g with fa1, a2g, fa1, a2, a3g , fa2, a3, a4g ,
fa3, a4g
But we lost long term memory
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Self attention

Each input xi is mutiplied by W , we have (q, k, v)

qi = W qai , ki = W kai , vi = W v ai

where
ai = Wxi

then we calculate dot product

a1,i =
1p
d
q1ki

then we allpy soft-max

â1,i =
ea1,i

∑j ea1,j
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Self attention
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Self attention

â1,i is mutiplied by vi

b1 = ∑
i
â1,ivi

so b1 have all information of xi

Also: if b1 only pay attention on fx1, x2g , then we can set â1,3 = â1,4 = 0
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Parallel

If we use vector form for,

qi = W qai , ki = W kai , vi = W v ai , ai = Wxi

Q = [q1, � � � q4] ,K = [k1, � � � k4] ,V = [v1, � � � v4]
The input is X , the output

A = XW ,Q = W qA,K = W kA,V = W vA
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Parallel

Â = KQ, Â = soft max
�
Â
�

B = V Â,
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Parallel

So
O = V Â,
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Multi-head Self-attention

(q, k, v) is divided into several, then each of them are applied to self
attention
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Positional Encoding

Positions information: each element should has its own position
information ei
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