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On-policy/Off-policy

ow to learn good policy

@ On-policy: evaluate a policy from data obtained from that policy.
Sampling policy is the same as learning policy. (s1, a1, 52, a2)

o Off-policy: evaluate a policy from data obtained from a different
policy. Sampling policy is different with learning policy.
(s1,a1,5 a1), (51,22, %, a)
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On-policy/Off-policy

On-policy:
@ It learns a better policy using the data from this policy. It is local
optimal.
@ It cannot assure both exploration and exploitation.

Off-policy approach used two policies:

@ One policy generates behavior (exploration, go anywhere). It is called
behavior policy, b

@ Another policy is for exploitation (use optimal policy). It is called
target policy, 7T
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On-policy/Off-policy

Learn Value Function .
Learn Value Function
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Generalized Policy Interaction

Initialize policy 7T

Repeat
Polity evaluation: compute Q7
Policy improvement: update 7t

7' (s) = argmax, Q™ (s, a)
=argmax, [r(s,a) + 7 Lsgesp (s’ |s,a) VT ()]

It is model-based, we need p (s’ | s, a)
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MC for Q evaluation (On Policy)

MC Policy Evaluation (Model free)
Initialize the counter N (s,a) =0, G(s,a) =0, Q" (s,a) =0, Vs € S,
Vac A
Loop
Using policy 7t sample the episode i untill T;, generate
Si1.4i 1, b1, ST @i T B T
calculate the return from t to all path of the ith episode

Git=rit+ i1+ + 'YTiilri,Tf

For each state-action (s, a) visited in episode /
For the first time t that the state (s, a) is visited in episode i

N(s,a)=N(s,a)+1
G(s,a) =G(s,a)+ Gj; (s, a)

Q7 (s,a) = gg;
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Policy Improvement

Given an estimate Q™ (s, a), Vs, Va
Update new policy

41 (s) = argmax Q™ (s, a)
a

argmax, Q™ (s,a) — a
max, Q™ (s,a) — Q
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-greedy policy

Policy Evaluation with Exploration

o Need to try all (s, a) pairs, then follow 7

@ Q™ (s, a) should be good enough so that policy improvement is a
monotonic operator

Balance exploration and exploitation. Define |.A| be the number of actions.
e-greedy policy is

) argmax, Q7 (s,a) probability (1—¢)
m(als)= a probability ﬁ

where a is a random action with probability €, but we take a | A| times,
max, Q7 (s, a) is greedy with probability (1 —€)
It is also called e—soft, or soft policy
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Convergence the soft-policy

For any e-greedy policy rt, w.r.t. Q™, 1ti+1 is a monotonic improvement

V7Ti+12\/7fi
Becasue
Q7 (s,a) =r(s,a) + 7 Lsesp(s' | s,a) VTk (s')
Q" (s,a) =r(sa) +7Lses(s'|s,a) QT (s)
SO

V7Titt = V7 (s, mip1) = E[Q™ (s,a)] = L,eativ1(a] s) Q7 (s, a)
= (1— ) max; Q" (5,2) + 5 Loex Q" (5.9

Ol

v
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Convergence the soft-policy

We calculate

(1—€)max, Q7 (s,a) = (1 —€) max, Q™ (s, a) 1=¢
= (1 —¢e)max, Q™ (s, a)%
> (1 ¢) Q7 (s,2) Tl
= Q" (s, a)Za[n,( | s) — ﬁe]

=L,7i(als) Q7 (s,a) — (7 s Q" (s, )
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Convergence the soft-policy

So

V7 (s, i) 2 a7t (a ] ) Q7 (s,a) — 15 Xa @7 (5,3) + 1y Laea Q7 (s,
=1,7i(als) Q" (s,a) =E[Q" (s a)] = VT

So the policy improvement

) argmax, Q" (s,a) probability (1—¢)
m(als)= a probability 5

can assure
V7Tt > V7T foralls € S

e—greedy policy improvement over policy 7T, for any s € S
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Convergence the soft-policy

When the e-soft policy 7T is no longer improved, then

V7Ti+1 — V7Ti

Proof.

Wehn the policy 7T is no longer improved,

max Q™ (s,a) = Q" (s, a)

V7 (s, it1) = 137 Laea Q" (s,a) + (1 —€) max, Q7 (s, a)
= Za T (a ’ S) Qn(sla) — Vi = \/7T*

(CINVESTAV-IPN) November 20, 2024



GLIE (Greedy in Limit of Infinite Exploration)

If all state-action pairs are visited an infinite number of times

lim N (s, a) — o
1—00

This means € = 0, the e-greedy policy becomes

m(als) =arg max Q™ (s, a)

GLIE

IIL[TC]O mifals) = arg with prob 1 Qs.2)

So the behavior policy max Q (s, a) converges to greedy policy 7t; (a | s).
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MC for Q function evaluation with e-greedy

Initialize the counter N (s,a) =0, Q(s,a) =0, Vs € S, Va € A, set
e=1i=1
Create initial e-greedy policy

i = e-greedy (Q)
Loop
sample the episode / with 7, : s;1,a;1, i1, Si.7;. @i, T,, i, T,
calculate the return from t to all path of the ith episode
Git=rit+rits1+- -+ ')’Ti_lri,Ti
Fort=1---T
if first-visit (s, a) in episode / ,
N(s,a) = N(s,a)+1
Q (St. at) _ Ggs a%
- Q (str at) 1

7 [Git — Q(st,at)]

=41
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TD for policy iteration (SARSA)

Initial e-greedy policy 77 randomly (€ = 1), initial state s; = s
Sample action from policy, Take a; ~ 77 (s¢)
Observer (r¢, s¢+1)
Loop
Take action a;41 ~ 7T (S¢41)
Observer (re+1,St42)
Update Q with (s, ar, e, Se+1, ary1)

Q(st,ar) = Q(st,ar) +are +7Q (st41,ar41) — Q (S, ar)]

Perform policy improvement, e-greedy(Q)
t=t+1
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Convergence properties of SARSA

Theorem

SARSA for finite-state and finite-action MDPs converges to the optimal
action-value,

Q(s,a) — Q" (s,a)

if 1) The policy sequence 7t (a | s) satisfied the condition GLIE (All
state-action pairs are visited an infinite number of times), 2) The step a;
satisfied the Robbins-Muno sequence

Yiiiar =00
Y al <oo

Empirically do not use it.
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Robbins-Muno sequence

Check the condition
0<a < I,Zat:oo.
t

We usually select constant learning rate
a=ua 0O0<a<l

When

Ui
=—1_ o0<py<i, >>1
at 1+%k = p

where 7 is a constant. Since B is very big, for finite time k, the learning
rate oy ~ 7, is constant.
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Robbins-Muno sequence

Because . .
Yk=1 1+ =
5 B
P <1+17;3k> =B (B 1) —n® < oo

where 1 (B, 1) is the Digamma function, it is bounded.
So Q) converges to zero w.p.1, and hence, Qx converges to Q* with
probability one.
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Maintain state-action estimates and use bootstrapping, use the value of
the best function action

Q(st.ar) = Q (st ar) +a|n +’Yma§XQ (st1.a) — Q (st ar)

where SARSA is

Q (st ar) = Q(st,ae) +a[re +vQ (St+1,ar+1) — Q (st ar)]
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-greedy exploration

Initial Q (s, a), Vs € S, initial state s; = s
Set 71y to be e-greedy w.rt. Q@
Loop

Take action a; ~ 77 (S¢t)

Observer (rt, se4+1)

Update Q with (s, a, re, Se+1)

Q (st ar) = Q(se,ar) +a [rt +ymaxQ (st+1,a) — Q (Styat)]

Perform policy improvement, e-greedy(Q)
t=t+1

(CINVESTAV-IPN) November 20, 2024 20 / 52



Double Q-learning

Initial @1 (s,a) and @ (s,a), Vs € S, initial state s; = 5
Loop
Set a; using e-greedy
7 (s) = argmax (Q1 + @2)

Observer (r¢, st+1)
If with ¢ probability

Q1 (st,ar) = Q1 (st ar) +a [ft + 7y max @ (st+1,a) — Q1 (st, at)}
e else
@2 (St, at) =@ (St, at) +a [ft + 'mex @1 (5t+1, a) - @ (Stv at)}

t=t+1
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Convergence of Q-learning

Lemma

Consider the stochastic process (I, A, F), let P be a sequence of
increasing, (, and A are Pp-measurable, and (,, Ak and Fy are
P-measurable, if A, satisfies

A1 = (1= Cy) Di+ i Fi
and
Q@ 0<Z <1 Y,l=00 Tils <o
Q ||E{Fk|Pc}|| < «||Ak|| + ck, x € (0,1], and cx converges to zero

Q var{Fi|Pc} < K(1+4x||Ax]
denotes the maximum norm.

)2, K is a positive constant,

then A converges to zero with probability one.
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Convergence of Q-learning

For the finite MDP (X, U, f,p), the Q-learning algorithm

Qi1 (Xks uk) = Qu (X, uk)
Fok {o(xk, uk) + v mings [Qu(xkt1, u™)] — Qu(x, uk) }

converges to the optimal value function Q* almost surely, if

Y ap=00, Y a <o (2)
P P
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Convergence of Q-learning

The Q-learning algorithm is

Q1 (ks u) = Que (ks i) + g [regr + ¥ mings Qu(Xk1, u*) — Qu(xk, ).
= (1 — ag) Qu (Xkr u) + i [rieg1 + ¥ mings Qu(Xi41, u™)]
(3)

where re+1 = p(Xk, uk).Define Ak(Xk, uk) = Qk(Xk, uk) — Q*,

At (X, u) = (1= i) D (X, i) + e (rk+1 +ymin Qx (Xit1, u") — Q*>

(CINVESTAV-IPN) November 20, 2024 24 / 52



Convergence of Q-learning

Define
Fr(xk, uk) = rep1 + 7"3!}1 Qk (X1, U") — Q

Check the condition
IE{FklPit | < xl[Axll + i e € (0, 1]
Use the value iteration mapping H for Py,
E{Fi(ie, ui) [P = H Qe ui)] — @ = H [Qu(xk, ui)] — H(QT)
Since ‘H is a contraction, from Lemma
H Qi (e, )] = H(Q™) < vl Quexies i) — @ (s i) || = [ Ak (i, wie) |

So
| E{Fr Okt ) [PrdIL < vl A (x, k) ]
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Convergence of Q-learning

Check the condition

var{Fi|Pc} < K(1+x|Akl)?

2
var{ Fic(xic, ui) |Pic} = var [(rk—i-l +’Y”3in Qk (X1, U™) — Q*) ]
Because r1 is bounded, and A (xk, ux) = Qx(xk, ux) — Q*,

var { Fic(xic, ui) [P} < K (14 7[| 8k (xk, i) )2

where K is a constant.
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Convergence of Q-learning

Check the condition
0<g,<1) ¢ =oco.
P

For Q-learning we usually select constant learning rate

lh=ua, 0<a<l1

But if

Ky = ———, 0<7]<1, ﬁ>>1
) 1+%k

where 7 is a constant. Since B is very big, for finite time k, the learning
rate oy ~ 7, is constant.
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Convergence of Q-learning

Because - .
Y=t Ik T
2
Ipa (ljﬁk) =By (B.1) = < oo

where 1 (B, 1) is the Digamma function, it is bounded.
So Ay converges to zero w.p.1, and hence, Qx converges to Q* with
probability one.
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@ There are 5 rooms connected by doors.
@ The outside of the building is number 5.
@ An agent start from any room, and go outside (to Room-5)
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"-1" represents no link between nodes

(CINVESTAV-IPN)

State
0
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0
-1

0

3 4 5
-1 0 -1
0 -1 100
0 -1 -1
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Q learning

Qi+1 (St.ar) = Qi (se,ar) + [rtJrl + v TTL?X [Qk (st41,ar)] — Qx (st at):|

@ Each exploration is an episode

@ Each episode consists of the agent moving from the initial state to
the goal state
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The initial state is Room-1, sp =1
The initialize matrix is Q1 (sp,a) =0
lety =08 a=1,

Qi1 (st ar) = Qi (se, @) + res1 + ¥ maxa, [Qi (Se+1,a)] — Qx (st ar)
= re41 + Yy Maxa, [Qk (St+1' at)]

Let Q (1,5) is the value of Q-table as @y 5. It is means: Room 1 (s;)—
Room 5 (s¢+1).

Qk (st4+1,a): from Room 5 there are three routes, we use greedy policy
max, {q(5.1),¢(5,4),q9(5,5)}

Q(1,5) =r(1,5)+08max{Q(5,1), Q(5,4), Q(5,5)} = 100+0.8+0 =
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Next episode:

The initial state is Room-3, sp = 3

There are three possible actions: 3 — 1,3 — 2,3 — 4
For 3 — 1, there are 2 possible actions: 1 — 3, 1 — 5.

Q(3,1) =r(3,1) +0.8max{Q(L,3),Q(L,5)} = 0+0.8x100 = 80

[ T S

oo oo o o
cooc oo o =
[ e Y e i e e e N OS]
C oo oo o W
coocooo o
=E=E=R=E=X=

Then from Room-1, got to Room-5 to finish this episode
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After many episodes, Q-table reaches

0 1 2 3 4 5
o[ o o o 0400 O
1] o o 032 0500
O=210 0 0320 0 0
3| 0400 256 0 400 0O
40320 0 0320 0 500
S| 0400 0 0 400 3500
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Control policy

7T (st) = arg max {@Q:}

(o)

If the initial is Room-2, the optimal trajectory is2 — 3 — 1 — 5.

80
0| &4
100
51
@_, 100 |:. Goal State
64
100
64 |80
80
64 @
80
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Value function Approximation (VFA)

Generalization: Tabular representation is insufficient
Update the estimator after each episod (MC) or each step (TD): teacher
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Value function Approximation (VFA)

Approximating v, from experience using a known policy 7T.
Approximate state value,

V (s, w) =~ V7 (s)(s)

Approximate control methods: approximation of the action-state value of
policy 7T,

Q (s,a,w) =~ Q™ (s) (s, a)

There are many ways to approximate the value function. For example, in
the simplest linear representation, using ¢ (s) to represent the eigenvector
of the state s, the state value function can be approximately expressed as:

1% (s,w) = WT(p (s)
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Approximators

© Linear feature representation

© Neural Networks

© Decision trees: highly interpretable
@ Nearest neighbors

@ Fourier/Wavelet bases

Differential function approximators (smooth optimation property)

@ Linear feature representation

@ Neural Networks
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Linear function approximation

We use a feature vetror to represent the feature of the state s,

X (s) = [x(s)--x(s)]

where the features are basis function, which can be defined in many
different ways.Value function

Vis,w) = ; WiX; (s) = X" (s) W
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Linear function approximation

The object function is

Jy = Ey { [V (s) = V (s, W)]z}

The real value function V7 (s) uses TD (SARSA) or Q-learning.
The stochastic gradient descent is

QO
\g

AW = —ax7 J( ) —ay

2 [V (s w) - V()] 5
— 2 [V (s, w) - VT ()] X (5

where « is leraning rate, V (s, w) — V7 (s) is prediction error, X (s) is
feature value

s\‘vg

V (s, w)
)
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From tabular learning to function approximation

Becasue we do not have real V™ (s) as the target in supervised learning,
we use estimated values from MC or TD to replace V7 (s)

MC: the state value is the expected value of the return, we can substitue
V7 (s) the the return
G = E’Y'_lRi,t
i

after each episod

Wt+1 - Wt =« |:Gt - XT (Si') Wti| X (St)

(CINVESTAV-IPN)
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Bath MC for value function approximation

Let G (s;) be an unbiased sample of true expected returnV7 (s;)

N
J=arg min ; [G (si) — WiX; (s)]
Least square
“1
W= (XTX) XG

where X is a matrix of the features of each of N states X; (s)
No any Markov assumption
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TD learning for value function approximation

TD learning

F (s) = VT (s) +a[{re VT (se1) ) — VI (s)]

or
VT (s) = VT (s) +a[r V7 (s) — V7 (9)]
The traget is
r+qV7T(s)

find weights to minimize the mean squared erroe returnV” (s;)

Ju =B { [r+7 V™ (s W) = V™ (s W))*}
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TD learning for value function approximation

Linear TD(0)
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TD(0) linear value function approximation: Policy

Evaluation

Initial t =1, W = rand
Loop

Sample (s, at, re, Se+1)
Update weights

W = W—f—uc[r—i—'yXT () W —XT (s) W}X(s)

t=t+1

(CINVESTAV-IPN)
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Action-Value approximation

Q (s,a, W) = Q" (s,a)

Jy = Ex{[Q7 (s,2) = Q5,2 W]’}

Use stochastic gradient descent to fid a local minimum

AW = —a 22
“ow

X (s,a)=[x1(s,a) - xp(s, a)]
Q(s,aW)=X"(s,a) W
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Action-Value approximation

MC
Wt+l — Wt =K [Gt — XT (St, at) Wt:| X (St, at)
SARSA
W=W+ua [r—l—')/XT (s a) W —XT(s,a) W] X (s, a)
Q-learning

W=W-+ua [r%—'yme/]xf{)(s’,a’, W)—Q(s,a, W)} VWQ(s,a, W)
or

W=W+a [r—{-’ymax(XT (s'.d) W) — X7 (s,a) W}X(s,a)
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Deep Reinforcement Learning

Deep Neural Networks to approximate

@ Value function
@ Policy
@ Model
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Deep Reinforcement Learning

Neural network R
V=Wz=W¢(s,a)
Q=Wz=Wg¢|[V (s a).]

Stochastic gradient decent (SGD)

AW = —aVy J (W)

(CINVESTAV-IPN) November 20, 2024 50 / 52



Deep Reinforcement Learning

MC method
AW =ua |G — Q(s,a W) VwQ (s, a, W)
SARSAR
AW =a[r+7yQ (s, W) —Q(s,a, W) VwQ (s a W)

Q-leanming

AW =« [r+’ymaax©(s’,a, W) — Q(s,a, W)] VWQ(s,a, W)
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Deep Q-Network (DQN) that is the first deep reinforcement learning
method proposed by DeepMind. Paper was published on Nature in
2015

NN is CNN

Naive DQN has 3 convolutional layers and 2 fully connected layers to
estimate Q values directly from images.

DNN is easily overfitting in online reinforcement learning.
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