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On-policy/O¤-policy

ow to learn good policy

On-policy: evaluate a policy from data obtained from that policy.
Sampling policy is the same as learning policy. (s1, a1, s2, a2)

O¤-policy: evaluate a policy from data obtained from a di¤erent
policy. Sampling policy is di¤erent with learning policy.
(s1, a1, s2, a1) , (s1, a2, s2, a2)

(CINVESTAV-IPN) RL November 20, 2024 2 / 52



On-policy/O¤-policy

On-policy:

It learns a better policy using the data from this policy. It is local
optimal.

It cannot assure both exploration and exploitation.

O¤-policy approach used two policies:

One policy generates behavior (exploration, go anywhere). It is called
behavior policy, b

Another policy is for exploitation (use optimal policy). It is called
target policy, π
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On-policy/O¤-policy
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Generalized Policy Interaction

Initialize policy π
Repeat

Polity evaluation: compute Qπ

Policy improvement: update π

π0 (s) = argmaxa Qπ (s, a)
= argmaxa [r (s, a) + γ ∑s 02S p (s

0 j s, a)V π (s 0)]

It is model-based, we need p (s 0 j s, a)
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MC for Q evaluation (On Policy)

MC Policy Evaluation (Model free)
Initialize the counter N (s, a) = 0, G (s, a) = 0, Qπ (s, a) = 0, 8s 2 S ,
8a 2 A
Loop

Using policy π sample the episode i untill Ti , generate
si ,1, ai ,1, ri ,1, � � � si ,Ti , ai ,Ti , ri ,Ti ,

calculate the return from t to all path of the ith episode

Gi ,t = ri ,t + γri ,t+1 + � � �+ γTi�1ri ,Ti

For each state-action (s, a) visited in episode i
For the �rst time t that the state (s, a) is visited in episode i

N (s, a) = N (s, a) + 1
G (s, a) = G (s, a) + Gi ,t (s, a)
Qπ (s, a) = G (s ,a)

N (s ,a)
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Policy Improvement

Given an estimate Qπ (s, a) , 8s, 8a
Update new policy

πt+1 (s) = argmax
a
Qπt (s, a)

argmaxa Qπi (s, a)! a
maxa Qπi (s, a)! Q
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-greedy policy

Policy Evaluation with Exploration

Need to try all (s, a) pairs, then follow π

Qπ (s, a) should be good enough so that policy improvement is a
monotonic operator

Balance exploration and exploitation. De�ne jAj be the number of actions.
ε-greedy policy is

π (a j s) =
(
argmaxa Qπ (s, a) probability (1� ε)

a probability ε
jAj

where a is a random action with probability ε, but we take a jAj times,
maxa Qπ (s, a) is greedy with probability (1� ε)
It is also called ε�soft, or soft policy
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Convergence the soft-policy

Theorem
For any ε-greedy policy π, w.r.t. Qπ, πi+1 is a monotonic improvement

V πi+1 � V πi

Proof.
Becasue

Qπk (s, a) = r (s, a) + γ ∑s 02S p (s
0 j s, a)V πk (s 0)

Qπ (s, a) = r (s, a) + γ ∑s 02S π (s 0 j s, a)Qπ (s 0)

so

V πi+1 = V π (s,πi+1) = E [Qπi+1 (s, a)] = ∑a2A πi+1 (a j s)Qπ (s, a)
= (1� ε)maxa Qπ (s, a) + ε

jAj ∑a2A Q
π (s, a)
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Convergence the soft-policy

We calculate

(1� ε)maxa Qπ (s, a) = (1� ε)maxa Qπ (s, a) 1�ε
1�ε

= (1� ε)maxa Qπ (s, a) (∑a πi (ajs))�ε
1�ε

� (1� ε)Qπ (s, a)
∑a

h
πi (ajs)� 1

jAj ε
i

1�ε

= Qπ (s, a)∑a

h
πi (a j s)� 1

jAjε
i

= ∑a πi (a j s)Qπ (s, a)� ε
jAj ∑a Q

π (s, a)
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Convergence the soft-policy

So

V π (s,πi+1) � ∑a πi (a j s)Qπ (s, a)� ε
jAj ∑a Q

π (s, a) + ε
jAj ∑a2A Q

π (s, a)
= ∑a πi (a j s)Qπ (s, a) = E [Qπ (s, a)] = V πi

So the policy improvement

π (a j s) =
(
argmaxa Qπ (s, a) probability (1� ε)

a probability ε
jAj

can assure
V πi+1 � V πi , for all s 2 S

ε�greedy policy improvement over policy π, for any s 2 S
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Convergence the soft-policy

When the ε-soft policy π is no longer improved, then

V πi+1 = V πi

Proof.
Wehn the policy π is no longer improved,

max
a
Qπ (s, a) = Qπ (s, a)

so

V π (s,πi+1) = ε
jAj ∑a2A Q

π (s, a) + (1� ε)maxa Qπ (s, a)
= ∑a πi (a j s)Qπ (s, a) = V πi = V π�
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GLIE (Greedy in Limit of In�nite Exploration)

If all state-action pairs are visited an in�nite number of times

lim
i!∞

Ni (s, a)! ∞

This means ε = 0, the ε-greedy policy becomes

π (a j s) = argmax
a
Qπ (s, a)

GLIE
lim
i!∞

πi (a j s)! arg max
with prob 1

Q (s, a)

So the behavior policy maxQ (s, a) converges to greedy policy πi (a j s).
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MC for Q function evaluation with e-greedy

Initialize the counter N (s, a) = 0, Q (s, a) = 0, 8s 2 S , 8a 2 A, set
ε = 1, i = 1
Create initial ε-greedy policy

πi = ε-greedy (Q)

Loop
sample the episode i with πi : si ,1, ai ,1, ri ,1, � � � si ,Ti , ai ,Ti , ri ,Ti
calculate the return from t to all path of the ith episode

Gi ,t = ri ,t + γri ,t+1 + � � �+ γTi�1ri ,Ti
For t = 1 � � �T

if �rst-visit (s, a) in episode i ,

N(s, a) = N(s, a) + 1

Q (st , at ) =
G (s ,a)
N (s ,a)

= Q (st , at ) + 1
N (s ,a) [Gi ,t �Q (st , at )]

i = i + 1
Policy improvement

πi = ε-greedy (Q)
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TD for policy iteration (SARSA)

Initial ε-greedy policy π randomly (ε = 1), initial state st = s0
Sample action from policy, Take at � π (st )
Observer (rt , st+1)
Loop

Take action at+1 � π (st+1)
Observer (rt+1, st+2)
Update Q with (st , at , rt , st+1, at+1)

Q (st , at ) = Q (st , at ) + α [rt + γQ (st+1, at+1)�Q (st , at )]

Perform policy improvement, ε-greedy(Q)
t = t + 1
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Convergence properties of SARSA

Theorem
SARSA for �nite-state and �nite-action MDPs converges to the optimal
action-value,

Q (s, a)! Q� (s, a)

if 1) The policy sequence πt (a j s) satis�ed the condition GLIE (All
state-action pairs are visited an in�nite number of times), 2) The step αt
satis�ed the Robbins-Muno sequence

∑∞
t=1 at = ∞

∑∞
t=1 a

2
t < ∞

Empirically do not use it.
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Robbins-Muno sequence

Check the condition
0 < at � 1,∑

t
at = ∞.

We usually select constant learning rate

at = α, 0 < α � 1

When
at =

η

1+ 1
βk
, 0 < η � 1, β >> 1

where η is a constant. Since β is very big, for �nite time k, the learning
rate αk � η, is constant.
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Robbins-Muno sequence

Because
∑∞
k=1

η

1+ 1
β k
= ∞

∑∞
k=1

�
η

1+ 1
β k

�2
= η2β2ψ (β, 1)� η2 < ∞

where ψ (β, 1) is the Digamma function, it is bounded.
So Qk converges to zero w.p.1, and hence, Qk converges to Q� with
probability one.
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Q-learning

Maintain state-action estimates and use bootstrapping, use the value of
the best function action

Q (st , at ) = Q (st , at ) + α

�
rt + γmax

a0
Q
�
st+1, a0

�
�Q (st , at )

�
where SARSA is

Q (st , at ) = Q (st , at ) + α [rt + γQ (st+1, at+1)�Q (st , at )]
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-greedy exploration

Initial Q (s, a) , 8s 2 S , initial state st = s0
Set πb to be ε-greedy w.r.t. Q
Loop

Take action at � πb (st )
Observer (rt , st+1)
Update Q with (st , at , rt , st+1)

Q (st , at ) = Q (st , at ) + α
h
rt + γmax

a
Q (st+1, a)�Q (st , at )

i
Perform policy improvement, ε-greedy(Q)
t = t + 1
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Double Q-learning

Initial Q1 (s, a) and Q2 (s, a) , 8s 2 S , initial state st = s0
Loop

Set at using ε-greedy

π (s) = argmax
a
(Q1 +Q2)

Observer (rt , st+1)
If with c probability

Q1 (st , at ) = Q1 (st , at ) + α
h
rt + γmax

a
Q2 (st+1, a)�Q1 (st , at )

i
e else

Q2 (st , at ) = Q2 (st , at ) + α
h
rt + γmax

a
Q1 (st+1, a)�Q2 (st , at )

i
t = t + 1
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Convergence of Q-learning

Lemma
Consider the stochastic process (ζ,∆,F ), let P be a sequence of
increasing, ζ0 and ∆0 are P0-measurable, and ζk , ∆k and Fk are
Pk -measurable, if ∆k satis�es

∆k+1 = (1� ζk )∆k + ζkFk (1)

and

1 0 < ζk � 1, ∑k ζk = ∞, ∑k ζ2k < ∞
2 kEfFk jPkgk � κk∆kk+ ck , κ 2 (0, 1], and ck converges to zero
3 varfFk jPkg � K (1+ κk∆kk)2, K is a positive constant, k � k
denotes the maximum norm.

then ∆k converges to zero with probability one.
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Convergence of Q-learning

Theorem
For the �nite MDP (X ,U, f , ρ), the Q-learning algorithm

Qk+1(xk , uk ) = Qk (xk , uk )
+αk fρ(xk , uk ) + γminu� [Qk (xk+1, u�)]�Qk (xk , uk )g

converges to the optimal value function Q� almost surely, if

∑
k

αk = ∞, ∑
k

α2k < ∞ (2)

(CINVESTAV-IPN) RL November 20, 2024 23 / 52



Convergence of Q-learning

The Q-learning algorithm is

Qk+1(xk , uk ) = Qk (xk , uk ) + αk [rk+1 + γminu� Qk (xk+1, u�)�Qk (xk , uk )]
= (1� αk )Qk (xk , uk ) + αk [rk+1 + γminu� Qk (xk+1, u�)]

(3)
where rk+1 = ρ(xk , uk ).De�ne ∆k (xk , uk ) = Qk (xk , uk )�Q�,

∆k+1(xk , uk ) = (1� αk )∆k (xk , uk )+ αk

�
rk+1 + γmin

u�
Qk (xk+1, u

�)�Q�
�
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Convergence of Q-learning

De�ne
Fk (xk , uk ) = rk+1 + γmin

u�
Qk (xk+1, u

�)�Q�

Check the condition

kEfFk jPkgk � κk∆kk+ ck , κ 2 (0, 1]

Use the value iteration mapping H for Pk ,

EfFk (xk , uk )jPkg = H [Qk (xk , uk )]�Q� = H [Qk (xk , uk )]�H(Q�)

Since H is a contraction, from Lemma

H [Qk (xk , uk )]�H(Q�) � γkQk (xk , uk )�Q�(xk , uk )k = γk∆k (xk , uk )k

So
kEfFk (xk , uk )jPkgk � γk∆k (xk , uk )k
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Convergence of Q-learning

Check the condition

varfFk jPkg � K (1+ κk∆kk)2

varfFk (xk , uk )jPkg = var
��
rk+1 + γmin

u�
Qk (xk+1, u

�)�Q�
�2�

Because rk+1 is bounded, and ∆k (xk , uk ) = Qk (xk , uk )�Q�,

varfFk (xk , uk )jPkg � K (1+ γk∆k (xk , uk )k)2

where K is a constant.
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Convergence of Q-learning

Check the condition
0 < ζk � 1,∑

k

ζk = ∞.

For Q-learning we usually select constant learning rate

ζk = α, 0 < α � 1

But if
αk =

η

1+ 1
βk
, 0 < η � 1, β >> 1

where η is a constant. Since β is very big, for �nite time k, the learning
rate αk � η, is constant.
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Convergence of Q-learning

Because
∑∞
k=1

η

1+ 1
β k
= ∞

∑∞
k=1

�
η

1+ 1
β k

�2
= η2β2ψ (β, 1)� η2 < ∞

where ψ (β, 1) is the Digamma function, it is bounded.
So ∆k converges to zero w.p.1, and hence, Qk converges to Q� with
probability one.
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Example

There are 5 rooms connected by doors.

The outside of the building is number 5.

An agent start from any room, and go outside (to Room-5)
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Reward R

t

"-1" represents no link between nodes
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Q-learning

Q learning

Qk+1 (st , at ) = Qk (st , at ) + α

�
rt+1 + γmax

at
[Qk (st+1, at )]�Qk (st , at )

�

Each exploration is an episode

Each episode consists of the agent moving from the initial state to
the goal state

(CINVESTAV-IPN) RL November 20, 2024 31 / 52



Q-learning

The initial state is Room-1, s0 = 1
The initialize matrix is Q1 (s0, a) = 0
let γ = 0.8, α = 1,

Qk+1 (st , at ) = Qk (st , at ) + rt+1 + γmaxat [Qk (st+1, at )]�Qk (st , at )
= rt+1 + γmaxat [Qk (st+1, at )]

Let Q (1, 5) is the value of Q-table as Q1,5. It is means: Room 1 (st)!
Room 5 (st+1).
Qk (st+1, a): from Room 5 there are three routes, we use greedy policy
maxa fq (5, 1) , q (5, 4) , q (5, 5)g

Q (1, 5) = r (1, 5)+ 0.8max
a
fQ (5, 1) ,Q (5, 4) ,Q (5, 5)g = 100+ 0.8� 0 = 100
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Q-learning

After one episode
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Q-learning

Next episode:
The initial state is Room-3, s0 = 3
There are three possible actions: 3! 1, 3! 2, 3! 4
For 3! 1, there are 2 possible actions: 1! 3, 1! 5.

Q (3, 1) = r (3, 1) + 0.8max
a
fQ (1, 3) ,Q (1, 5)g = 0+ 0.8 � 100 = 80

Then from Room-1, got to Room-5 to �nish this episode
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Q-learning

After many episodes, Q-table reaches
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Control policy

π (st ) = argmax
a
fQtg

If the initial is Room-2, the optimal trajectory is 2! 3! 1! 5.

(CINVESTAV-IPN) RL November 20, 2024 36 / 52



Value function Approximation (VFA)

Generalization: Tabular representation is insu¢ cient
Update the estimator after each episod (MC) or each step (TD): teacher
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Value function Approximation (VFA)

Approximating vπ from experience using a known policy π.
Approximate state value,

V̂ (s,w) � V π (s) (s)

Approximate control methods: approximation of the action-state value of
policy π,

Q̂ (s, a,w) � Qπ (s) (s, a)

There are many ways to approximate the value function. For example, in
the simplest linear representation, using φ (s) to represent the eigenvector
of the state s, the state value function can be approximately expressed as:

V̂ (s,w) = W T φ (s)

(CINVESTAV-IPN) RL November 20, 2024 38 / 52



Approximators

1 Linear feature representation
2 Neural Networks
3 Decision trees: highly interpretable
4 Nearest neighbors
5 Fourier/Wavelet bases

Di¤erential function approximators (smooth optimation property)

Linear feature representation

Neural Networks
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Linear function approximation

We use a feature vetror to represent the feature of the state s,

X (s) = [x1 (s) � � � xn (s)]

where the features are basis function, which can be de�ned in many
di¤erent ways.Value function

V̂ (s,w) =
n

∑
i=1
WiXi (s) = XT (s)W

(CINVESTAV-IPN) RL November 20, 2024 40 / 52



Linear function approximation

The object function is

Jw = Eπ

n�
V π (s)� V̂ (s,w)

�2o
The real value function V π (s) uses TD (SARSA) or Q-learning.
The stochastic gradient descent is

∆W = �α5 J (W ) = �α ∂J
∂W

= �2α
�
V̂ (s,w)� V π (s)

�
∂

∂W V̂ (s,w)
= �2α

�
V̂ (s,w)� V π (s)

�
X (s)

where α is leraning rate, V̂ (s,w)� V π (s) is prediction error, X (s) is
feature value
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From tabular learning to function approximation

Becasue we do not have real V π (s) as the target in supervised learning,
we use estimated values from MC or TD to replace V π (s)
MC: the state value is the expected value of the return, we can substitue
V π (s) the the return

Gt = ∑
i

γi�1Ri ,t

after each episod

Wt+1 �Wt = α
h
Gt � XT (st )Wt

i
X (st )

(CINVESTAV-IPN) RL November 20, 2024 42 / 52



Bath MC for value function approximation

Let G (si ) be an unbiased sample of true expected returnV π (si )

J = argmin
W

N

∑
i=1
[G (si )�WiXi (s)]

Least square

W =
�
XTX

��1
XG

where X is a matrix of the features of each of N states Xi (s)
No any Markov assumption

(CINVESTAV-IPN) RL November 20, 2024 43 / 52



TD learning for value function approximation

TD learning

V π
t+1 (s) = V

π
t (s) + α [frt + γV π

t (st+1)g � V π
t (s)]

or
V π (s) = V π (s) + α

�
r + γV π

�
s 0
�
� V π (s)

�
The traget is

r + γV π
�
s 0
�

�nd weights to minimize the mean squared erroe returnV π (si )

Jw = Eπ

n�
r + γV̂ π

�
s 0,W

�
� V̂ π (s,W )

�2o
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TD learning for value function approximation

Linear TD(0)

∆W = α
�
rt + γV̂ π (s 0,W )� V̂ π (s,W )

�
X (s)

= α
�
r + γXT (s 0)W � XT (s)W

�
X (s)
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TD(0) linear value function approximation: Policy
Evaluation

Initial t = 1, W = rand
Loop

Sample (st , at , rt , st+1)
Update weights

W = W + α
h
r + γXT

�
s 0
�
W � XT (s)W

i
X (s)

t = t + 1
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Action-Value approximation

Q̂ (s, a,W ) � Qπ (s, a)

Jw = Eπ

n�
Qπ (s, a)� Q̂ (s, a,W )

�2o
Use stochastic gradient descent to �d a local minimum

∆W = �α
∂J

∂W

X (s, a) = [x1 (s, a) � � � xn (s, a)]
Q̂ (s, a,W ) = XT (s, a)W
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Action-Value approximation

MC
Wt+1 �Wt = α

h
Gt � XT (st , at )Wt

i
X (st , at )

SARSA

W = W + α
h
r + γXT

�
s 0, a0

�
W � XT (s, a)W

i
X (s, a)

Q-learning

W = W + α

�
r + γmax

a0
Q̂
�
s 0, a0,W

�
� Q̂ (s, a,W )

�
5W Q̂ (s, a,W )

or

W = W + α
h
r + γmax

�
XT

�
s 0, a0

�
W
�
� XT (s, a)W

i
X (s, a)
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Deep Reinforcement Learning

Deep Neural Networks to approximate

Value function

Policy

Model
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Deep Reinforcement Learning

Neural network
V̂ = Wz = Wφ (s, a)
Q̂ = Wz = Wφ [V (s, a) ...]

Stochastic gradient decent (SGD)

∆W = �αrW J (W )
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Deep Reinforcement Learning

MC method

∆W = α
�
Gt � Q̂ (s, a,W )

�
rW Q̂ (s, a,W )

SARSAR

∆W = α
�
r + γQ̂

�
s 0, a0,W

�
� Q̂ (s, a,W )

�
rW Q̂ (s, a,W )

Q-leanming

∆W = α
h
r + γmax

a
Q̂
�
s 0, a,W

�
� Q̂ (s, a,W )

i
rW Q̂ (s, a,W )
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DQN

Deep Q-Network (DQN) that is the �rst deep reinforcement learning
method proposed by DeepMind. Paper was published on Nature in
2015

NN is CNN

Naive DQN has 3 convolutional layers and 2 fully connected layers to
estimate Q values directly from images.

DNN is easily over�tting in online reinforcement learning.
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