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Introduction

PID control (Proportional-Integral-Derivative control)
The error between a desired set-point and a measured process variable

*

e=y'—y

The control signal to the process to minimize the error is

t
u:er+K,-/ e (7) dT + Kyé
0
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Introduction

@ Proportional (P): If the error is large, the controller output will also
be large.

@ Integral (1): It helps to eliminate steady-state errors.

@ Derivative (D): It helps to anticipate future errors and reduce
overshoot.
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Motivations

PID (model-free) + Intelligent control (model-free)

Performance + Stability
o Improved Performance

@ Enhanced Robustness:

@ Increased Flexibility
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Stability of PD

The dynamics of a robot

M(q)g+C(q.q) q+g(q)+f(g)=1
The classical industrial PD law is

T=Ky(q' — q) + Ka(§” — &)

Theorem

The tracking error

e=q —q
is bounded

lel|* < eo

when

K,>0,  Ky>0

.
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Proof of PD cotnrol

The dynamics of a serial n—link rigid robot manipulator
M(q)g+C(q.4)a+G(q)+F(q) =1
Property 1. The inertia matrix is symmetric and positive definite , i.e.
my ||x|° < x"M(x)x < my ||x||*; Vx € R"

Property 2. The centripetal and Coriolis matrix is skew-symmetric,

xT |M(q) —2C(q,q)| x =0

(CINVESTAV-IPN)

Neural Control -Compnesation September 13, 2024 7 /55



Proof of PD cotnrol

The tracking error is defined as

Normal PD control is
T = er + Kyé

where K, and Ky are positive definite, symmetric and constant matrices
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Proof of PD cotnrol: Regulation case

In regulation case

When G and F are known,
T=Ke+Kye+G+F

The proposed Lyapunov function is

1 1
V= 5@:TM@ + 5eTK,,e

The derivative of V is

V=e"Meé+ EéT/\/IéJr e Kye
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Proof of PD cotnrol: Regulation case

Since Mé = —Mg and C4+ G+ F— 1= —Mag,
Mé=Cqg+G+F—1

and
eTMe=e" (Cg+G+F—1)
=-elCe+e" (G+F—n1)
So .
V=—elCetel (G+F—1)+LeTMe+eTKye
=lel [M—2Cle+e’ (G+F—1)+é"Kpe

From Property 2, x [IVI — 2C] x=0and T=K,e+ Kyée+ G+ F,
V=—eT (Kye+ Kge) + e Kye = —e Kge < 0

LaSalle
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Proof of PD cotnrol: Tracking case

g9 #0, 50 & # —g, € # —4, the tracking error as:
e=q’—q e=¢"—¢

Define

Lyapunov

The derivative of V is
vV = rTMi+%rTMr
Using Cg+ G+ F —1=—-Mg, —Cr+ Cq?+ CAe = Cg

Mi = Mé + MAé = M§? — Mg+ MAé
=Mg?+Cqg+G+F—1+ MAe
=-—T1-Cr+ [M(Ae+§7)+C(Ae+q?) + G+ F|
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Proof of PD cotnrol: Tracking case

If the control is
T=Kr+f+G+F

where f = M (Aée+ §9) + C (Ae+ ¢“), then
Mi = —Kr — Cr

V=rT(=Kr—Cr)+ir"Mr
=—rTKr—rTCr+3r"Mr

From Property 2, r [/\/I — 2C] r=20
V=—r"Kr <0
But we need kto know

f:M(Aé+‘C’ld)+C<Ae+qd>,—>MvaGvF
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Stability of PD

Theorem

For regulation case %q* =0, g (q) and f (g) are known, and

T=PD+g(q)+1(9)
then

lim [le]®> =0
t—o0

K,>0,  K4>0
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Stability of PD with gravity compensation

Theorem

When only g (q) is known, f (q> is unknown, if the control is

T=PD+g(q)

and
K, >0, Ky > K >0

then
el < d

d is upper bound of the friction f (§) .
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PD with neural network compensation

When g (g) and f (q> are known, the control is

T=PD+g(q)+f(4)

and
lim [le|®> =0

t—o0

When g (g) and f (q) are un known, PD with neural network
compensation is
u= PD+ NN

where NN = W;o(x), and

g(a)+f(q) = Weo(x) +e
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PD with neural network compensation

If the PD control with neual compensator is
T:PD—}—Wt(T(X), Kp>O,Kd>K1>0
where the weight W; is updated as

d
a Wt = KW(T(X)eT

then the tracking error converges to d
lel* < d

here d is the upper bound of the nerual approximation error ¢, i.e.,

g(q)+f(q) = Wo(x) +e
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Proof of PD cotnrol with neural compensation

If the model is unknown, the PD control is

T=Kr
but
Mi=—1—Cr+[M(Aé+§?) + C(Ae+¢?) + G+ F]
=—Kr—Cr+f+G+F
Then

V=—rTKr—r"Cr+ie"™Me+rT (f+G+F)
=—r"Kr+r" (f+G+F)
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Proof of PD cotnrol with neural compensation

Estimation of r” (f + G + F)

rT(F+GHF)<rTAr+(F+G+F) A Y (F+G+F)<rTAr+d

where d is upper bound of (f+ G+ F)" AL (f + G+ F)
V<—rT(K=A)r+d

when K > A
2 -
HrH(K—A) —d
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Proof of PD cotnrol with neural compensation

The PD control with neural compensation
T = Kr+ Wo(x)

here
Wo(x)~ G+ F—f

where x = [qT,qT,eT,éT,qd,qd,dd]T, also
G+F—f=W'o(x)+ny

where 77 is bounded modeling error, ||5]|* < 7
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Proof of PD cotnrol with neural compensation

The proposed Lyapunov function is

1 1 ]
V=2 Mr+tr (WTKV;1W>

where W = W* — W — . The derivative of it is
V= rTMr+LrTMr+tr [WTK;? (LW)]
=—rTKr+rT (f+ G+ F)+tr [ WTK, ! (ZW)]
Using neural compensator T = Kr + Wo(x),

Mi=—-Kr—Cr+f+G+F
= —Kr— Wo(x) + W*o (x) + 1
= —Kr—Cr+ Wo (x)+7

Now

V= —rTKr 1T (Wo (x) +17) + tr [WTle (jtw)}
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Proof of PD cotnrol with neural compensation

The modeling error is estimated as

rT17 < rTAr—HyTA_l;y < rTAr+ﬁ

V<—rT (K- A)r+17+t[ ( (tW>+a()T>]

wete (5 e

the updating law is

d - d T
d—W dtW = —Ku,o(x)r
then
VS —rT(K=A)r+7
when K > A

2 _
Irllkc—ny =77
here 7 < d, because G + F — f = W*o(x) + 7.
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PD with MLP compensation

glq) +f <q) = Wio(Vix) + ¢
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PD with MLP compensation

If the PD control with neual compensator is
T=PD+ Wio(Vix), K, >0Ky>K >0
where the weight W; and V; are updated as

LW, = —di Ko (Vex)X] — deKiw Dy Vi xx]
LV, = —diK/X] Do Wix + diIKyxT VixAs

. —_ 2 2
0 if |%allr < 72l
1 if % X

if %2z > A in (1)

t =

then the tracking error converges to d

_ d
{X2 | el < M}
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From PD to PID

t
u:er—i—K,-/ e (T) dT + Kye
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PID control law can be expressed

u=Kye— Kyé+z
Z:K,-e

with e (0) = 0. The closed-loop system is
K,-e

— | e | = —e
e G+ M (Cq+g — Ko+ Kyg — 2)
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Stability of PID

Theorem

Consider robot dynamic controlled by linear PID controller, the closed loop
system is semi-globally asymptotically stable at the equilibrium,

Am (M
e < 2 (M)

K
K >0

provided that control gains satisfy

Am (Kp) > 3kg

A (K)) < B3z

Am (Ka) = B+ Am (M)
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PID+NN

Consider robot dynamic

M(q)§g+C(q.4)qg+G(q)+F(9) =u
Neural PID control

T=Kye+ Kye+z+ Wo(q,q)
z= K;e, Z(O) = 2
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Stability of PID+NN

Theorem

Consider robot dynamic controlled by the neural PID control, the closed
loop system is semiglobally asymptotically stable at the equilibrium

x=[g-¢ () eé] =0

Aum (I\/I)

lell < —=2—Am (Ki) Am (Kp) (1)

provided that control gains satisfy

Am (Kp)
Am (M)

A (Kp) = Shpo A (K) < B2 08 A (Ka) 2 B+ Aut (M) (2)

Am (M)A (
3

where p = K"), kp > 0, and the weight of the neural networks

is tuned by
d

EW:_KWO'(qv q)rT, r=eé+ Ae
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Proof of of PID4+NN

G+F—f=W'(x)+7(x)

the lower bound of [ 7 (x) dx is ky
We construct a Lyapunov function as

V=Vi+WVa+Vi+V,
Vi =teTKpet+eln+3yTK 1y
_ 1.7 T aTp—1
Vo=zce Kete' z+52' K"z
Vs = 2T Kye — AeT Me + LeT Me
Vy = fotiydx—k(p—i—%eTKde—i—%tr(WTKV;lW)
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Proof of of PID4+NN

We first prove V is a Lyapunov function, V > 0.
f & T 1 5T je—117
v4:/ ndx — ky + SeTKge + tr (WTKSIW) > 0
0 2 2

SETEE well] e

Since K, > 0, Vi is a semi positive definite matrix, Vi > 0.

3
When a > —/\m(K,‘l)/\m(Kp)'

2
1 3
(\/3% (o) lell =[5 qu) >0 (3)

W[

Vo >

N
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Proof of of PID4+NN

Because
y A < Iyl 1A < Nyl A X< [Am (A)] | [1x] (6)
/1
when a < —EA;EAAE’,E\)"’(KP),

V>3 (x/Am (M) llel =/ 32m (K5) ||e||> >0

If
\EA,,, (K Y) Ad (Ky) Ay (M) > Ay (M) (8)
there exists
V5Am (M) An (K,) 3
IR ey B

This means if K}, is sufficiently large or K; is sufficiently small, V' (c’], g, (3)
is globally positive definite.
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Proof of of PID4+NN

. t [ oax . ,
Using %fo n o= (—{iq%ﬁ =x"y, %’7 = 0 and % [eTn] = eTy, the

derivative of V is

V=4"Mg+14TMg+eTKeet+n7g
el +tr [WIK,T (W)

: 10
+AzK 'z 4Tz +eTz—u (éTMq+eTMéI+eTME?> 1o

—|—AeTKdé
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Proof of of PID4+NN

Using Skew, the first three terms become
—4"— 4" Keg+ g z4+ g n+q" Wo (11)
And

V <~ [Am (Ko) = @i (M) — ke [le]] [1a]
- [“Am (Kp) —Am <Kl) - Dékg] HeH
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Proof of of PID4+NN

If
Am (M)
lell < = (13)
and
Am (Kg) > (1+a) Ay (M) (14)
Am (Kp) > £Am (Ki) + kg
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Proof of of PID4+NN

then V <0, ||e|| decreases. Then (14) is established. Using (8) and
).‘m (K1) = /\M( AE (14) is (2).

V is negative semi-definite. Define a ball £ of radius o > 0 centered at
the origin of the state space, which satisfies these condition

z:{a:nan < A (M) =o-} (15)

ke

V is negative semi-definite on the ball X.

There exists a ball X of radius ¢ > 0 centered at the origin of the state
space on which V < 0.
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Proof of of PID4+NN

The origin of the closed-loop equation (??) is a stable equilibrium. Since
the closed-loop equation is autonomous, we use La Salle’s theorem. Define

Q as ~ )
Q= {x(t) ¢l eR3:V =0}

= 13,4,
z{geR"-azo R".g=0€R"} (16)

From (10), V =0 if and only if § = g = 0. For a solution x (t) to belong
to ) for all t > 0, it is necessary and sufficient that § = g = 0 for all
t>0.
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Proof of of PID4+NN

Therefore it must also hold that g = 0 for all t > 0. We conclude that
from the closed-loop system (??), if x (t) € Q) for all t > 0, then

qb(q,c'z) =¢(q7.0) =&+ ¢ (q%,0) a7

E=0

implies that ¢ = 0 for all t > 0. So x (t) = (G, 4, é] =0 € R%" is the only
initial condition in Q) for which x (t) € Q) for all t > 0.
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Proof of of PID4+NN

Finally, we conclude from all this that the origin of the closed-loop system
(??) is locally asymptotically stable. Because % <Am (Ki_l) Am (Kp), the
upper bound for ||g|| can be

Am (M
e < 20 (8
c

Am (Ki) Am (Kp) (18)
It establishes the semiglobal stability of our controller, in the sense that

the domain of attraction can be arbitrarily enlarged with a suitable choice
of the gains. Namely, increasing K|, the basin of attraction will grow.

(CINVESTAV-IPN) Neural Control -Compnesation September 13, 2024 38 /55



Closed-loop tuning of PID control

Since the robot dynamic is not stable in open loop, it is impossible to send
step commands to all joints of the robot to tune PID gains., we use

PD; = K e+ Kyé
PID, = K, e+Kde~|—K fO dT

The closed-loop system with PD; is stable. If we apply PID; to the
closed-loop system

M(9)a+C (q.9) g+&(a)+f (a) = PDL = PID,
The total control torque to the robot is
T = PID, 4+ PD,

if we tune PID controllers m times,

M(q)g+C(q.9)q+g(q) +f() ZPID
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Closed-loop tuning od PID control

PID gains are linear independent,
The refinement of PID is the same as adding a new PID controller. For
PIDs
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Closed-loop tuning od PID control

PD control with small gains
and gravity compensation

PD, +g

Stable closed-loop
system

Step response of the
closed-loop system

Linear second-order
system

PID tuning for the
linear system PID,

Refine PID gains
PID,

Stability conditions
for PID gains PID,

Thefinal PID control

t =PD,+PID, +PID, +PID, + g

Figure: PID tuning scheme.
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PID with velocity observer

PID
u-Ke#—Kf0 T)dT + Kgé

=K, (¢ —q)+Kf0 (1) dT+ Ky (g7 — )

The first-order filter
bs

s+a

v(s) =

where v (s) is an estimation of ¢
The transfer function can be realized by

x=—A(x+ Bq)
v=x+ Bq

q(s)
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PD with velocity observer

The PID control becomes

u= Kpye+ Kgv+z+ Wo(q)

Z:K,'e
x=—A(x+ Bq)
v=x+ Bg
Am (M) 1 1
< m(B—wal)— =An (A -
lell < 2227 A (B = al) = SAm ()] + 5 o]

C
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PD with velocity observer

Desired joint angles qd

X Impedance
a Linear PID agorithm
1L

d
LK b~ g 1+
¥ —._’C)_’ exoskeleton =T
p

A

Y
g, "
<
Force
Neural compensator sensors
f,
@ I
Human
g, arm/hand
G
% f, v»d| b
| s+a

[
(CINVESTAV-IPN) Neural Control -Compnesation September 13, 2024 44 / 55




PD control with fuzzy compensation

PD with neural network compensation

u= PD+ NN

where .
F=g(q)+f (q) = W,o(Vix) +¢

I fuzzy rules

R': IF (g1 is A};) and (qais A3;) and --- (gn is Ar;) THEN £ is By

? = Wtq) (5)
n I n
¢f = VAﬁ/ZHVAP'
j=1 i=1j=1
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Training

t
AP, - pWpi=Yp Si—Ci T
i Cji = —2kezi [03]2r1,13

1
d P P Wpi—Y, (Sj'*cﬁf T
d,pP _ _ P Wpi—Yp \Si”5i)
dtaji 2kbzl bp [‘Tﬁ]3 Mp
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PD control with fuzzy compensation and high-gain

observer

PD control u Robot .
..... t t,
H};gh gain | ™. | | Fuzzy
observer compensator
Fo 1=

Figure: PD control with fuzzy compensation
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PD control with sliding mode control

PD+SM
T = Kre+ Kyée + Kssgn(e)
The uncertainty is f + G + F. We have to select a very big sliding mode

gain, such that
Ks > d
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PD control with sliding mode control and NN

u= Kpre+ Kgé+ Wo(x) + Kssgn(e)
G+ F+f=W(x)+
Ki>7 <<d
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PD control with sliding mode control and NN

If the updating law for the weights of neural networks is

d
= Kuwo(x)r] (19)

the sliding mode gain
Ks > 17

1 is the upper bound of the neural approximation error
f+G+F=Wo(x)+7, [In]><7

then the neural sliding mode PD control forces the tracking error
asymptotic stability,
tlim re=20 (20)
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PD control with sliding mode control and NN

SERIAL Neural sliding mode PID control (PID+NN+SMC)

Neural compensation

Figure: Tracking error with NN and SMC
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PID control with sliding mode control and NN

t
u= Kpe+ K,-/ e(7)dt+ Kyé + Wo(x) + Kssgn(r)
0
u=u+(1—s)uw

. 2
s = L if ||r||2QZ’7
0 if Hr||Q <7
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PID control with sliding mode control and NN

Theorem

If the sliding mode satisfies
Ks > 17

where 1 is the upper bound of the neural modeling error, then the neural
sliding mode PD/PID control with the neural training law

d
p W = s:Kyo(x)r"

make the tracking error r is stable, and it converge to zero in finite time,

Irll — 0
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Conclusion

Stability of PD and PID

@ — Tuning of PID

@ — PID+NN

© — PID+Fuzzy

@ PD—Velocity observer

@ PID+NN —PD+NN-+SM
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