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Introduction

PID control (Proportional-Integral-Derivative control)
The error between a desired set-point and a measured process variable

e = y � � y

The control signal to the process to minimize the error is

u = Kpe +Ki
Z t

0
e (τ) dτ +Kd ė
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Introduction

Proportional (P): If the error is large, the controller output will also
be large.
Integral (I): It helps to eliminate steady-state errors.
Derivative (D): It helps to anticipate future errors and reduce
overshoot.
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Motivations

PID (model-free) + Intelligent control (model-free)
Performance + Stability

Improved Performance
Enhanced Robustness:

Increased Flexibility
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Stability of PD

The dynamics of a robot

M (q) q̈ + C (q, q̇) q̇ + g (q) + f (q̇) = τ

The classical industrial PD law is

τ = Kp(qd � q) +Kd (q̇d � q̇)

Theorem
The tracking error

e = q� � q
is bounded

kek2 < ∞

when
Kp > 0, Kd > 0
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Proof of PD cotnrol

The dynamics of a serial n�link rigid robot manipulator

M (q) q̈ + C (q, q̇) q̇ + G (q) + F (q̇) = τ

Property 1. The inertia matrix is symmetric and positive de�nite , i.e.

m1 kxk2 � xTM(x1)x � m2 kxk2 ; 8x 2 Rn

Property 2. The centripetal and Coriolis matrix is skew-symmetric,

xT
� �
M(q)� 2C (q, �q)

�
x = 0
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Proof of PD cotnrol

The tracking error is de�ned as

e = qd � q, ė = q̇d � q̇

Normal PD control is
τ = Kpe +Kd ė

where Kp and Kd are positive de�nite, symmetric and constant matrices
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Proof of PD cotnrol: Regulation case

In regulation case

q̇d = 0, ė = q̇d � q̇ = �q̇, ë = �q̈

When G and F are known,

τ = Kpe +Kd ė + G + F

The proposed Lyapunov function is

V =
1
2
ėTMė +

1
2
eTKpe

The derivative of V is

�
V = ėTMë +

1
2
ėT Ṁė + ėTKpe
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Proof of PD cotnrol: Regulation case

Since Më = �Mq̈ and Cq̇ + G + F � τ = �Mq̈,

Më = Cq̇ + G + F � τ

and
ėTMë = ėT (Cq̇ + G + F � τ)
= �ėTCė + ėT (G + F � τ)

So �
V = �ėTCė + ėT (G + F � τ) + 1

2 ė
T Ṁė + ėTKpe

= 1
2 ė
T
�
Ṁ � 2C

�
ė + ėT (G + F � τ) + ėTKpe

From Property 2, xT
�
Ṁ � 2C

�
x = 0 and τ = Kpe +Kd ė + G + F ,

�
V = �ėT (Kpe +Kd ė) + ėTKpe = �ėTKd ė � 0

LaSalle
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Proof of PD cotnrol: Tracking case

q̇d 6= 0, so ė 6= �q̇, ë 6= �q̈, the tracking error as:

e = qd � q, ė = q̇d � q̇

De�ne
r = ė +Λe, Λ = ΛT > 0

Lyapunov

V =
1
2
rTMr

The derivative of V is

V̇ = rTMṙ +
1
2
rT Ṁr

Using Cq̇ + G + F � τ = �Mq̈, �Cr + Cq̇d + CΛe = Cq̇

Mṙ = Më +MΛė = Mq̈d �Mq̈ +MΛė
= Mq̈d + Cq̇ + G + F � τ +MΛė
= �τ � Cr +

�
M
�
Λė + q̈d

�
+ C

�
Λe + q̇d

�
+ G + F

�
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Proof of PD cotnrol: Tracking case

If the control is
τ = Kr + f + G + F

where f = M
�
Λė + q̈d

�
+ C

�
Λe + q̇d

�
, then

Mṙ = �Kr � Cr

V̇ = rT (�Kr � Cr) + 1
2 r
T Ṁr

= �rTKr � rTCr + 1
2 r
T Ṁr

From Property 2, rT
�
Ṁ � 2C

�
r = 0

V̇ = �rTKr � 0

But we need kto know

f = M
�

Λė + q̈d
�
+ C

�
Λe + q̇d

�
,! M,C ,G ,F
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Stability of PD

Theorem

For regulation case d
dt q

� = 0, g (q) and f (q̇) are known, and

τ = PD + g (q) + f (q̇)

then
lim
t!∞

kek2 = 0

if
Kp > 0, Kd > 0
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Stability of PD with gravity compensation

Theorem

When only g (q) is known, f
� �
q
�
is unknown, if the control is

τ = PD + g (q)

and
Kp > 0, Kd > K1 > 0

then
kek2 � d̄

d̄ is upper bound of the friction f (q̇) .
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PD with neural network compensation

When g (q) and f
� �
q
�
are known, the control is

τ = PD + g (q) + f (q̇)

and
lim
t!∞

kek2 = 0

When g (q) and f
� �
q
�
are un known, PD with neural network

compensation is
u = PD +NN

where NN = Wtσ(x), and

g (q) + f
� �
q
�
= Wtσ(x) + ε
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PD with neural network compensation

Theorem
If the PD control with neual compensator is

τ = PD +Wtσ(x), Kp > 0,Kd > K1 > 0

where the weight Wt is updated as

d
dt
Wt = Kw σ(x)eT

then the tracking error converges to d̄

kek2 � d̄

here d̄ is the upper bound of the nerual approximation error ε, i.e.,

g (q) + f (q̇) = Wtσ(x) + ε
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Proof of PD cotnrol with neural compensation

If the model is unknown, the PD control is

τ = Kr

but

Mṙ = �τ � Cr +
�
M
�
Λė + q̈d

�
+ C

�
Λe + q̇d

�
+ G + F

�
= �Kr � Cr + f + G + F

Then
V̇ = �rTKr � rTCr + 1

2 ė
T Ṁė + rT (f + G + F )

= �rTKr + rT (f + G + F )
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Proof of PD cotnrol with neural compensation

Estimation of rT (f + G + F )

rT (f + G + F ) � rTΛr + (f + G + F )T Λ�1 (f + G + F ) � rTΛr + d̄

where d̄ is upper bound of (f + G + F )T Λ�1 (f + G + F )

V̇ � �rT (K �Λ) r + d̄

when K > Λ
krk2(K�Λ) ! d̄
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Proof of PD cotnrol with neural compensation

The PD control with neural compensation

τ = Kr +W σ(x)

here
W σ(x) � G + F � f

where x =
�
qT , q̇T , eT , ėT , qd , q̇d , q̈d

�T
, also

G + F � f = W �σ(x) + η

where η is bounded modeling error, kηk2 < η̄
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Proof of PD cotnrol with neural compensation

The proposed Lyapunov function is

V =
1
2
rTMr +

1
2
tr
�
W̃ TK�1w W̃

�
where W̃ = W � � W̃ � . The derivative of it is

V̇ = rTM
�
r + 1

2 r
T
�
Mr + tr

�
W̃ TK�1w

� d
dt W̃

��
= �rTKr + rT (f + G + F ) + tr

�
W̃ TK�1w

� d
dt W̃

��
Using neural compensator τ = Kr +W σ(x),

Mṙ = �Kr � Cr + f + G + F
= �Kr �W σ(x) +W �σ (x) + η
= �Kr � Cr + W̃ σ (x) + η

Now

V̇ = �rTKr + rT
�
W̃ σ (x) + η

�
+ tr

�
W̃ TK�1w

�
d
dt
W̃
��
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Proof of PD cotnrol with neural compensation

The modeling error is estimated as

rT η � rTΛr + ηTΛ�1η � rTΛr + η

V̇ � �rT (K �Λ) r + η + tr
�
W̃ T

�
K�1w

�
d
dt
W̃
�
+ σ(x)rT

��
We let

K�1w

�
d
dt
W̃
�
+ σ(x)rT = 0

the updating law is

d
dt
W̃ =

d
dt
W = �Kw σ(x)rT

then
V̇ � �rT (K �Λ) r + η

when K > Λ
krk2(K�Λ) ! η

here η � d̄ , because G + F � f = W �σ(x) + η.
(CINVESTAV-IPN) Neural Control -Compnesation September 13, 2024 21 / 55



PD with MLP compensation

g (q) + f
� �
q
�
= Wtσ(Vtx) + ε
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PD with MLP compensation

Theorem
If the PD control with neual compensator is

τ = PD +Wtσ(Vtx), Kp > 0,Kd > K1 > 0

where the weight Wt and Vt are updated as

d
dtWt = �dtKw σ(Vtx)xT2 � dtKwDσVv xxT2
d
dtVt = �dtKv xT2 DσWtx + dt lKv xTVtxΛ3

dt =

8<: 0 if kx2k2R �
χ2

4λmin(Γ)

1 if kx2k2R >
χ2

4λmin(Γ)

then the tracking error converges to d̄�
x2 j kek2R �

d̄
4λmin (Γ)

�
here d̄ is the upper bound of the nerual approximation error ε, i.e.,

g (q) + f
� �
q
�
= Wtσ(Vtx) + ε
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From PD to PID

u = Kpe +Ki
Z t

0
e (τ) dτ +Kd ė

1.05 1.1 1.15 1.2 1.25 1.3

0

0.1

0.2

0.3

Time (second)

Angle (rad) J1

Reference

Neural  PID
Neural PD

Linear  PID2 Linear  PID1

Figure:
(CINVESTAV-IPN) Neural Control -Compnesation September 13, 2024 24 / 55



PID

PID control law can be expressed

u = Kpe �Kd ė + z
ż = Kie

with e (0) = 0. The closed-loop system is

d
dt

24 ze
ė

35 =
24 Kie

�ė
q̈d +M�1 (Cq̇ + g �Kp q̃ +Kd q̇ � z)

35

(CINVESTAV-IPN) Neural Control -Compnesation September 13, 2024 25 / 55



Stability of PID

Theorem
Consider robot dynamic controlled by linear PID controller, the closed loop
system is semi-globally asymptotically stable at the equilibrium,

kek2 � λM (M)
αK

, K > 0

provided that control gains satisfy

λm (Kp) � 3
2kg

λM (Ki ) � β
λm (Kp )
λM (M )

λm (Kd ) � β+ λM (M)
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PID+NN

Consider robot dynamic

M (q) q̈ + C (q, q̇) q̇ + G (q) + F (q̇) = u

Neural PID control

τ = Kpe +Kd ė + z +W σ(q, q̇)
ż = Kie, z (0) = z0
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Stability of PID+NN

Theorem
Consider robot dynamic controlled by the neural PID control, the closed
loop system is semiglobally asymptotically stable at the equilibrium
x =

�
ξ � φ

�
qd
�
, e, ė

�T
= 0

kek � λM (M)
Kc

λM (Ki ) λm (Kp) (1)

provided that control gains satisfy

λm (Kp) �
3
2
kφ,λM (Ki ) � β

λm (Kp)
λM (M)

,λm (Kd ) � β+ λM (M) (2)

where β =
q

λm (M )λm (Kp )
3 , kφ > 0, and the weight of the neural networks

is tuned by
d
dt
W = �Kw σ(q, q̇)rT , r = ė +Λe

where Λ satis�es
p

1
3 λm (M )λm (Kp )

λM (M )
� Λ � 3

λm(K�1i )λm (Kp )
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Proof of of PID+NN

G + F � f = W �σ(x) + η (x)

the lower bound of
R

η (x) dx is kφ

We construct a Lyapunov function as

V = V1 + V2 + V3 + V4
V1 = 1

6e
TKpe + eT η + 3

2ηTK�1p η

V2 = 1
6e
TKpe + eT z + α

2 z
TK�1i z

V3 = 1
6e
TKpe �ΛeTMė + 1

2 ė
TMė

V4 =
R t
0 ηdx � kφ +

α
2 e
TKd e + 1

2 tr
�
W̃ TK�1w W̃

� (3)
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Proof of of PID+NN

We �rst prove V is a Lyapunov function, V � 0.

V4 =
Z t

0
ηdx � kφ +

α

2
eTKd e +

1
2
tr
�
W̃ TK�1w W̃

�
� 0

V1 =
1
2

�
e
η

�T � 1
3Kp I
I 3K�1p

� �
e
η

�
(4)

Since Kp � 0, V1 is a semi positive de�nite matrix, V1 � 0.
When α � 3

λm(K�1i )λm (Kp )
,

V2 �
1
2

 r
1
3

λm (Kp) kek �
s

3
λm (Kp)

kzk
!2
� 0 (5)
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Proof of of PID+NN

Because

yTAx � kyk kAxk � kyk kAk kxk � jλM (A)j kyk kxk (6)

when α �
p

1
3 λm (M )λm (Kp )

λM (M )
,

V3 �
1
2

 q
λm (M) kėk �

r
1
3

λm (Kp) kek
!2
� 0 (7)

If r
1
3

λm
�
K�1i

�
λ
3
2
m (Kp) λ

1
2
m (M) � λM (M) (8)

there exists q
1
3λm (M) λm (Kp)

λM (M)
� Λ � 3

λm
�
K�1i

�
λm (Kp)

(9)

This means if Kp is su¢ ciently large or Ki is su¢ ciently small, V
�
q̇, q̃, ξ̃

�
is globally positive de�nite.
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Proof of of PID+NN

Using d
dt

R t
0 η =

∂
R t
0 η

∂x
∂x
∂t = ẋ

T η, ddt η = 0 and d
dt

�
eT η

�
= ėT η, the

derivative of V is

V̇ = q̇TMq̈ + 1
2 q̇
T
�
Mq̇ + ėTKpe + ηT q̇

+ėT η + tr
�
W̃ TK�1w

� d
dt W̃

��
+ΛżK�1i z + ėT z + eT ż � α

�
ėTMq̇ + eT

�
Mq̇ + eTMq̈

�
+ΛeTKd ė

(10)
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Proof of of PID+NN

Using Skew, the �rst three terms become

�q̇T η � q̇TKd q̇ + q̇T z + q̇T η + q̇T W̃ σ (11)

And
V̇ � � [λm (Kd )� αλM (M)� αkc kek] kq̇k2

� [αλm (Kp)� λM (Ki )� αkg ] kek2
(12)
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Proof of of PID+NN

If

kek � λM (M)
αkc

(13)

and
λm (Kd ) � (1+ α) λM (M)
λm (Kp) � 1

α λM (Ki ) + kg
(14)
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Proof of of PID+NN

then V̇ � 0, kek decreases. Then (14) is established. Using (8) and
λm
�
K�1i

�
= 1

λM (Ki )
, (14) is (2).

V̇ is negative semi-de�nite. De�ne a ball Σ of radius σ > 0 centered at
the origin of the state space, which satis�es these condition

Σ =
�
q̃ : kq̃k � λM (M)

αkc
= σ

�
(15)

V̇ is negative semi-de�nite on the ball Σ.
There exists a ball Σ of radius σ > 0 centered at the origin of the state
space on which V̇ � 0.
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Proof of of PID+NN

The origin of the closed-loop equation (??) is a stable equilibrium. Since
the closed-loop equation is autonomous, we use La Salle�s theorem. De�ne
Ω as

Ω =
�
x (t) =

�
q̃, q̇, ξ̃

�
2 R3n : V̇ = 0

	
=
�

ξ̃ 2 Rn : q̃ = 0 2 Rn, q̇ = 0 2 Rn
	 (16)

From (10), V̇ = 0 if and only if q̃ = q̇ = 0. For a solution x (t) to belong
to Ω for all t � 0, it is necessary and su¢ cient that q̃ = q̇ = 0 for all
t � 0.

(CINVESTAV-IPN) Neural Control -Compnesation September 13, 2024 36 / 55



Proof of of PID+NN

Therefore it must also hold that q̈ = 0 for all t � 0. We conclude that
from the closed-loop system (??), if x (t) 2 Ω for all t � 0, then

φ
�
q,

�
q
�
= φ

�
qd , 0

�
= ξ̃ + φ

�
qd , 0

�
�
ξ̃ = 0

(17)

implies that ξ̃ = 0 for all t � 0. So x (t) =
�
q̃, q̇, ξ̃

�
= 0 2 R3n is the only

initial condition in Ω for which x (t) 2 Ω for all t � 0.
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Proof of of PID+NN

Finally, we conclude from all this that the origin of the closed-loop system
(??) is locally asymptotically stable. Because 1

α � λm
�
K�1i

�
λm (Kp) , the

upper bound for kq̃k can be

kek � λM (M)
kc

λM (Ki ) λm (Kp) (18)

It establishes the semiglobal stability of our controller, in the sense that
the domain of attraction can be arbitrarily enlarged with a suitable choice
of the gains. Namely, increasing Kp the basin of attraction will grow.
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Closed-loop tuning of PID control

Since the robot dynamic is not stable in open loop, it is impossible to send
step commands to all joints of the robot to tune PID gains., we use

PD1 = Kpe +Kd ė
PID2 = Kpe +Kd ė +Ki

R t
0 e (τ) dτ

The closed-loop system with PD1 is stable. If we apply PID2 to the
closed-loop system

M (q)
��
q + C

�
q,

�
q
� �
q + g̃ (q) + f

� �
q
�
� PD1 = PID2

The total control torque to the robot is

τ = PID2 + PD1

if we tune PID controllers m times,

M (q) q̈ + C (q, q̇) q̇ + g (q) + f
� �
q
�
=

m

∑
j=1
PIDj
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Closed-loop tuning od PID control

PID gains are linear independent,
The re�nement of PID is the same as adding a new PID controller. For
PID3
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Closed-loop tuning od PID control

PD control with small gains
and gravity compensation

Stable closedloop
system

gPD +1

Step response of the
closedloop system

Linear secondorder
system

PID tuning for the
linear system 2PID

Refine PID gains

3PID

The final PID control

gPIDPIDPIDPD ˆ4321 ++++=τ

Stability conditions
for PID gains 4PID

Figure: PID tuning scheme.
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PID with velocity observer

PID
u = Kpe +Ki

R t
0 e (τ) dτ +Kd ė

= Kp
�
qd � q

�
+Ki

R t
0 e (τ) dτ +Kd

�
q̇d � q̇

�
The �rst-order �lter

υ (s) =
bs
s + a

q (s)

where υ (s) is an estimation of q̇
The transfer function can be realized by�

ẋ = �A (x + Bq)
υ = x + Bq
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PD with velocity observer

The PID control becomes

u = Kpe +Kdυ+ z +W σ(q)
ż = Kie
ẋ = �A (x + Bq)
υ = x + Bq

kek � λm (M)
αkc

�
λm (B � αI )� 1

2
λm (A)

�
+
1
α
kυk
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PD with velocity observer

1q

dK

V W

2q

1
~f

7
~f

1
~q

2
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b
+

exoskeleton

Force
sensors

Human
arm/hand

Impedance
algorithm

dqDesired joint angles

Neural compensator

Linear PID

+

−
+

+

2q

1q

qv ≈

dt
d

Figure:
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PD control with fuzzy compensation

PD with neural network compensation

u = PD +NN

where
f̂ = g (q) + f

� �
q
�
= Wtσ(Vtx) + ε

l fuzzy rules

Ri : IF
�
q1 is A11i

�
and

�
q2 is A12i

�
and � � �

�
qn is A1ni

�
THEN f̂ is B1i

f̂ = ŴtΦ (s)

φpi =
n

∏
j=1

µApji
/

l

∑
i=1

n

∏
j=1

µApji
,
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Training

d
dt Ŵp = �KwZprT1
d
dt c

p
ji = �2kcz

p
i
ŵpi�byp
bp

sj�cpji
[σpji ]

2 rT1,p

d
dt σpji = �2kbz

p
i
ŵpi�byp
bp

(sj�cpji )
2

[σpji ]
3 rT1,p

(CINVESTAV-IPN) Neural Control -Compnesation September 13, 2024 46 / 55



PD control with fuzzy compensation and high-gain
observer

Robot

Fuzzy
compensator

High gain
observer

PD control

q
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q
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Figure: PD control with fuzzy compensation
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PD control with sliding mode control

PD+SM
τ = Kpe +Kd ė +Ks sgn(e)

The uncertainty is f + G + F . We have to select a very big sliding mode
gain, such that

Ks > d̄
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PD control with sliding mode control and NN

u = Kpe +Kd ė +W σ(x) +Ks sgn(e)

G + F + f = W �σ(x) + η

Ks > η̄ << d̄
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PD control with sliding mode control and NN

Theorem
If the updating law for the weights of neural networks is

d
dt
W = Kw σ(x)rTt (19)

the sliding mode gain
Ks > η̄

η̄ is the upper bound of the neural approximation error

f + G + F = W σ(x) + η̄ , kηk2 � η̄

then the neural sliding mode PD control forces the tracking error
asymptotic stability,

lim
t!∞

rt = 0 (20)
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PD control with sliding mode control and NN

SERIAL Neural sliding mode PID control (PID+NN+SMC)

k 2,small

k 2,big

SlidingMode

Neural compensation

q~

q

η

Figure: Tracking error with NN and SMC

(CINVESTAV-IPN) Neural Control -Compnesation September 13, 2024 51 / 55



PID control with sliding mode control and NN

u = Kpe +Ki
Z t

0
e (τ) dτ +Kd ė +W σ(x) +Ks sgn(r)

u = u1 + (1� st ) u2

st =

(
1 if krk2Q � η̄

0 if krk2Q < η̄
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PID control with sliding mode control and NN

Theorem
If the sliding mode satis�es

Ks > η̄

where η̄ is the upper bound of the neural modeling error, then the neural
sliding mode PD/PID control with the neural training law

d
dt
W = stKw σ(x)rT

make the tracking error r is stable, and it converge to zero in �nite time,

krk ! 0
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Conclusion

Stability of PD and PID

1 ! Tuning of PID
2 ! PID+NN
3 ! PID+Fuzzy
4 PD!Velocity observer
5 PID+NN !PD+NN+SM
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