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ABSTRACT. We apply a result of E. Kani relating genera
and Hasse–Witt invariants of Galois extensions to a family
of abelian p–extensions. Our formulas generalize the case
of elementary abelian p–extensions found by Garcia and
Stichtenoth.

1. Introduction. E. Kani proved in [2] that if L/K is a finite Galois
extension of function fields with Galois group G, then any relation
among idempotents of subgroups of G in Q[G] implies the same rela-
tion among the quotient genera. The quotient genus for a subgroup H
of G is the genus of the field KH := LH .

In the same paper, Kani proved that if the field of constants k of K
is a field of positive characteristic p > 0, then any relation among the
subgroups H of G implies the same relation among the Hasse–Witt
invariants of the fields KH .

In this paper we consider an arbitrary field k of characteristic p > 0,
a function field K with field of constants k and a Galois extension
L/K with Galois group isomorphic to

(
Z/pmZ

)n where m and n are
natural numbers. We find two formulas relating the genus gL of L
and the genera of a family of subextensions. The first one, is the
family of all cyclic subextensions of K and the second, the family of
all subextensions E with L/E cyclic. The same relations hold for the
Hasse–Witt invariants. Our results generalize the formula found by
Garcia and Stichtenoth [1] for elementary abelian p–extensions.

2. The results. Let k be any field of positive characteristic p and let
K be a function field with field of constants k. Let L/K be a Galois
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extension with Galois group isomorphic to G =
(
Z/pmZ

)n. Let G be
the set of all subgroups of G. For each H ∈ G, let KH be the subfield
of L fixed by H , that is KH := LH . Let gH be the genus of KH and let
τH be the Hasse–Witt invariant of KH . For H ∈ G, let εH be the norm
idempotent of H :

εH :=
1

|H|
∑
h∈H

h ∈ Q[G].

In [2], E. Kani proved the following result.

Theorem 2.1 (E. Kani). Any relation∑
H∈G

rHεH = 0 with rH ∈ Q,

among the norm idempotents yields the following two relations∑
H∈G

rHgH = 0 and
∑
H∈G

rHτH = 0,

among the genera and among the Hasse–Witt invariants. �

LetHi be the set of all subgroups ofG isomorphic to
(
Z/pmZ

)n−1⊕(
Z/pm−iZ

)
, 0 ≤ i ≤ m. The set of the fields fixed by H ∈ Hi is the set

Ki of all the subfieldsK ⊆ E ⊆ L such that Gal(E/K) ∼=
(
Z/piZ

)
, that

is, the collection of all the cyclic extensions ofK of degree pi contained
in L. Our main result is

Theorem 2.2. We have the following relations

gL = −p
(pn−1 − 1

p− 1

)
gK − (pn−1 − 1)

m−1∑
i=1

∑
E∈Ki

gE +
∑
E∈Km

gE ,

and

τL = −p
(pn−1 − 1

p− 1

)
τK − (pn−1 − 1)

m−1∑
i=1

∑
E∈Ki

τE +
∑
E∈Km

τE .
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Corollary 2.3 (Garcia–Stichtenoth [1]). If L/K is an elementary abelian
p–extension of degree pn, we have

gL = −p
(pn−1 − 1

p− 1

)
gK +

∑
E∈K1

gE . �

Now let Ti be the set of cyclic subgroups ofG of order pi, 0 ≤ i ≤ m.
Let Li be the set of subextensions K ⊆ E ⊆ L such that L/E is a cyclic
extension of degree pi. We have Li = {E | E = LH with H ∈ Ti}.
Then

Theorem 2.4. We have the following relations

p
(pn−1 − 1

p− 1

)
gL = −pnmgK − (pn−1 − 1)

m−1∑
i=1

pi
∑
E∈Li

gE + pm
∑
E∈Lm

gE ,

and

p
(pn−1 − 1

p− 1

)
τL = −pnmτK − (pn−1 − 1)

m−1∑
i=1

pi
∑
E∈Li

τE + pm
∑
E∈Lm

τE .

Remark 2.5. The genera of the subfields considered in Theorem 2.2
can be computed using the results of H. L. Schmid [3].

It is not easy to use Theorem 2.4 in applications since the family of
fields considered is in the top of the extension, so the genera is hard to
find.

3. The proofs. First we consider

Mi :=
∑
H∈Hi

εH , 0 ≤ i ≤ m.(3.1)

Note that M0 =
∑
H∈H0

εH = εG = 1
pnm

∑
σ∈G σ.

Fix an element σ ∈ G. Let T (i, σ) be the number of distinct
subgroups H ∈ Hi such that σ ∈ H . That is,

T (i, σ) := |{H ∈ Hi | σ ∈ H}|.
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Let s be a natural number 1 ≤ s ≤ m and let

Gs := {σ ∈ G | o(σ) = ps}.

Note that given any element σ ∈ Gs, there exists an element τ ∈ G of
order pm such that τp

m−s

= σ. If θ and σ are two elements of Gs, then
there exists an automorphism Φ ∈ Aut(G) such that Φ(θ) = σ. Thus
T (i, σ) = T (i, θ). Therefore, it makes sense to define

T (i, s) := T (i, σ),(3.2)

where σ is any element of Gs.

Let Cs :=
∑
σ∈Gs

σ ∈ Q[G]. Then

Mi =
∑
H∈Hi

1

|H|
∑
h∈H

h

=
1

pm(n−1)+(m−i)

m∑
s=0

T (i, s)
∑
σ∈Gs

σ

=
1

pnm−i

m∑
s=0

T (i, s)Cs.

We need to compute T (i, s) for all 0 ≤ i, s ≤ m. To this end, let es
be the number of elements of G of order ps. We have

es = qs − qs−1, 1 ≤ s ≤ m, and e0 = 1,

where q = pn. In particular if hi is the number of distinct cyclic
subgroups of G of order pi, it follows that

hi =
qi − qi−1

pi − pi−1
, 1 ≤ i ≤ m, and h0 = 1.

Since in an abelian group its lattice of subgroups is symmetric, that
is, if B is a subgroup of a finite abelian group A, then A contains a
subgroup isomorphic to A/B, it follows that

hi = |Hi|.

Let H ∈ Hi and let L(H, s) = |H ∩ Gs|. Since all subgroups in the
collectionHi are isomorphic, it makes sense to define

L(i, s) := L(H, s),
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where H is any subgroup inHi.
Let F ⊆ Hi ×Gs be defined by

F := {(H,σ) | σ ∈ H}.

We can compute |F| either column by column or row by row which
gives us:

|F| = hiL(i, s) = T (i, s)es,(3.3)

respectively. That is, to find T (i, s) it suffices to find L(i, s).

Now fix H ∈ Hi and let Bs := {x ∈ H | xps = IdG} = {x ∈
H | o(x) divides ps}. Then L(i, s) = |Bs| − |Bs−1| for 1 ≤ s ≤ m
and L(i, 0) = |B0| = 1. Now to find Bs, note that Bs = ker Ψ, where
Ψ : H → H , Ψ(x) = xp

s

. The image of Ψ is Hps . Hence

|Bs| =
|H|
|Hps |

.

SinceH ∼=
(
Z/pmZ

)n−1⊕(Z/pm−iZ), we haveHps ∼=
(
Z/pm−sZ

)n−1⊕
A, where

A ∼=

{(
Z/pm−i−sZ

)
if 1 ≤ s ≤ m− i

0 if m− i < s ≤ m
.

Therefore we have

L(i, s) =


1 if s = 0, 0 ≤ i ≤ m,
pn(s−1)(pn − 1) if 1 ≤ s ≤ m− i (0 ≤ i ≤ m− 1),

p(n−1)(s−1)+(m−i)(pn−1 − 1) if m− i+ 1 ≤ s ≤ m (1 ≤ i ≤ m).

(3.4)

From (3.3) and (3.4), we obtain

T (i, s) =


1 if i = 0, 0 ≤ s ≤ m,
hi if s = 0, 0 ≤ i ≤ m,(
pn−1
p−1

)
p(n−1)(i−1) if 1 ≤ s ≤ m− i, (1 ≤ i ≤ m− 1),(

pn−1−1
p−1

)
p(n−2)(i−1)+(m−s) if m− i+ 1 ≤ s ≤ m, (1 ≤ i ≤ m).

(3.5)
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Thus, from (3.5), we obtain

Mi =
pi

pnm
hi IdG +

pi

pnm

m−i∑
s=1

(pn − 1

p− 1

)
p(n−1)(i−1)Cs

+
pi

pnm

m∑
s=m−i+1

(pn−1 − 1

p− 1

)
p(n−2)(i−1)+(m−s)Cs,

for 1 ≤ i ≤ m and M0 = εG.

Now, in order to obtain a relation among the norm idempotents,
since M0 = εG and IdG = εIdG

, what we need is to find x1, . . . , xm ∈ Q
such that

m∑
i=1

xiMi = y0 IdG +

m∑
s=1

ysCs,

with y0 ∈ Q and y1 = y2 = · · · = ym 6= 0.

Let x1, . . . , xm ∈ Q and

m∑
i=1

xiMi =
( m∑
i=1

pi

pnm
xihi

)
︸ ︷︷ ︸

y0

IdG +
(pn − 1

p− 1

)m−1∑
i=1

m−i∑
s=1

xi
p(n−1)(i−1)+i

pnm
Cs

+
(pn−1 − 1

p− 1

) m∑
i=1

m∑
s=m−i+1

xi
p(n−2)(i−1)+(m−s)+i

pnm
Cs.

Changing the summation order (Fubini’s Theorem), we obtain

m∑
i=1

xiMi = y0 IdG +
(pn − 1

p− 1

)m−1∑
s=1

m−s∑
i=1

xi
p(n−1)(i−1)+i

pnm
Cs

+
(pn−1 − 1

p− 1

) m∑
s=1

m∑
i=m−s+1

xi
p(n−2)(i−1)+(m−s)+i

pnm
Cs

=

m∑
s=0

ysCs.
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We have, for 1 ≤ s ≤ m− 1,

ys =
(pn − 1

p− 1

)m−s∑
i=1

xi
p(n−1)(i−1)+i

pnm
+
(pn−1 − 1

p− 1

) m∑
i=m−s+1

xi
p(n−2)(i−1)+(m−s)+i

pnm

(3.6)

and

ym =
(pn−1 − 1

p− 1

) m∑
i=1

xi
p(n−2)(i−1)+i

pnm
.(3.7)

Consider 1 ≤ s ≤ m− 2. Our goal is to show that x1, . . . , xm can be
chosen so that ys = ys+1. From (3.6) we obtain

xm−s = −p
ns(pn−1 − 1)

pnm

m∑
i=m−s+1

p(n−1)(i−1)+(m−s)xi, 1 ≤ s ≤ m− 2.

(3.8)

Similarly, for s = m− 1, we obtain from ym−1 = ym, (3.6) and (3.7)

x1 = −(pn−1 − 1)

m∑
i=2

p(n−1)(i−2)xi.(3.9)

Taking s = 1 in (3.8), we obtain

xm−1 = −(pn−1 − 1)xm.(3.10)

From (3.10), taking s = 2 in (3.8), we obtain xm−2 = −(pn−1 − 1)xm.
By induction we obtain

x2 = · · · = xm−1 = −(pn−1 − 1)xm.(3.11)

Finally, from (3.11) and (3.9) we get x1 = −(pn−1 − 1)xm.

We let xm = 1 and obtain xi = −(pn−1− 1) for 1 ≤ i ≤ m− 1. Then,
from (3.6) and (3.7) we have

y1 = · · · = ym =
(pn−1 − 1

p− 1

) 1

pnm−1
.
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Therefore

−
m−1∑
i=i

∑
H∈Hi

(pn−1 − 1)εH +
∑

H∈Hm

εH = −(pn−1 − 1)

m−1∑
i=1

Mi +Mm

= y0 IdG +
1

pnm−1
(pn−1 − 1

p− 1

) m∑
s=1

Cs

= z0εIdG
+

1

pnm−1
(pn−1 − 1

p− 1

)
pnmεG

= z0εIdG
+ p
(pn−1 − 1

p− 1

)
εG,(3.12)

where z0 = y0 −
(
pn−1−1
p−1

)
1

pnm−1 . Since y0 =
∑m
i=1

pi

pnmxihi with xi as
in (3.10) and (3.11) with xm = 1, we obtain z0 = 1.

Theorem 2.2 is now a consequence of Theorem 2.1 and (3.12).

To prove Theorem 2.4, we consider now Ti, 0 ≤ i ≤ m. We have
|Ti| = hi. Let

Qi :=
∑
H∈Ti

εH .

Consider an element σ ∈ Gs. Let N(i, σ) be the number of cyclic
subgroups of G of order pi containing σ. Since for any two elements
of Gs, there exists an automorphism of G sending one into the other,
as in (3.2), it makes sense to define

N(i, s) := N(i, σ),

where σ is any element of Gs.

Then

Qi =
1

pi

∑
H∈Ti

∑
σ∈H

σ(3.13)

=
1

pi

m∑
s=0

N(i, s)
∑
σ∈Gs

σ

=
1

pi

m∑
s=0

N(i, s)Cs.
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First we compute N(m, s). Let {τ1, . . . , τn} be a basis of G over
Z/pmZ. More precisely, G = 〈τ1, . . . , τn〉 and o(τj) = pm for 1 ≤ j ≤ n.
Let µ ∈ G, say µ = τα1

1 · · · ταn
n . Then o(µ) = pm if and only if there

exists 1 ≤ j ≤ n such that gcd(αj , p) = 1. Fix an element σ of Gs with
s ≥ 1. We can choose the basis {τ1, . . . , τn} of G such that τp

m−s

1 = σ.

We have hm = qm−qm−1

pm−pm−1 . The different hm cyclic subgroups of G of
order pm are

〈τ1τα2
2 · · · ταn

n 〉, 0 ≤ αj ≤ pm − 1, 2 ≤ j ≤ n,
〈τpα1

1 τ2τ
α3
3 · · · ταn

n 〉, 0 ≤ α1 ≤ pm−1 − 1 and 0 ≤ αj ≤ pm − 1, 3 ≤ j ≤ n,
...

...

〈τpα1

1 τpα2

2 · · · τpαk−1

k−1 τkτ
αk+1

k+1 · · · τ
αn
n 〉, 0 ≤ αj ≤ pm−1 − 1, 1 ≤ j ≤ k − 1

and 0 ≤ αj ≤ pm − 1, k + 1 ≤ j ≤ n,
...

...

〈τpα1

1 τpα2

2 · · · τpαn−1

n−1 τn〉, 0 ≤ αj ≤ pm−1 − 1, 1 ≤ j ≤ n− 1.

Note that σ does not belong to any subgroup of the form

〈τpα1

1 τpα2

2 · · · τpαk−1

k−1 τkτ
αk+1

k+1 · · · τ
αn
n 〉, k ≥ 2,

since s ≥ 1. Otherwise we would have

σ = τp
m−s

1 =
(
τpα1

1 τpα2

2 · · · τpαk−1

k−1 τkτ
αk+1

k+1 · · · τ
αn
n

)β
for some 0 ≤ β ≤ pm − 1. Since {τ1, . . . , τn} is a basis of G, we would
have that pm | β, that is β = 0 which is impossible since σ 6= IdG.

Similarly, we have σ ∈ 〈τ1τα2
2 · · · ταn

n 〉 if and only if αj = pslj with
0 ≤ lj ≤ pm−s − 1, 2 ≤ j ≤ n. For s = 0 we have σ = IdG and
N(m, 0) = hm.

Therefore, we have

N(m, s) =

{
p(m−s)(n−1), 1 ≤ s ≤ m,
hm, s = 0.

(3.14)

Now let 0 ≤ i ≤ m. If i < s, then |H| = pi < ps = o(σ) so that
σ /∈ H . Thus N(i, s) = 0 if i < s. Now let s ≤ i. If s = 0 then
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N(i, 0) = hi, since σ = IdG. Next, we consider s ≥ 1. Let 1 ≤ t ≤ m

and φt : G −→ G, φ(x) = xp
t

. Then kerφt = {x ∈ G | xpt = 1} =

{x ∈ G | o(x) divides pt} and the image of φt is Gp
t

. In particular
if t = i, then any H ∈ Ti satisfies H ⊆ kerφi. It is easy to see that

kerφi = Gp
m−i ∼=

(
Z/piZ

)n
. Therefore, from the case i = m, we have

N(i, s) = p(i−s)(n−1) for s 6= 0 and N(i, 0) = hi. From (3.14) we get

N(i, s) =


hi, s = 0, 0 ≤ i ≤ m,
p(i−s)(n−1), 1 ≤ s ≤ i ≤ m,
0, 0 ≤ i < s ≤ m.

(3.15)

From (3.13) and (3.15) we obtain

Qi =
1

pi

i∑
s=0

N(i, s)Cs =
1

pi
hi IdG +

i∑
s=1

p(i−s)(n−1)−iCs.

Equivalently, we have

piQi = hi IdG +

i∑
s=1

p(i−s)(n−1)Cs, 0 ≤ i ≤ m, Q0 = IdG .(3.16)

Let x1, . . . , xn ∈ Q be such that
∑m
i=1 xip

iQi = y0 IdG +
∑m
s=1 ysCs

with y0 ∈ Q and y1 = y2 = · · · = ym 6= 0. Then, from (3.16), we have
m∑
i=1

xip
iQi =

( m∑
i=1

xihi

)
IdG +

m∑
i=1

i∑
s=1

xip
(i−s)(n−1)Cs

= y0 IdG +

m∑
s=1

m∑
i=s

xip
(i−s)(n−1)Cs = y0 IdG +

m∑
s=1

ysCs,

where y0 =
∑m
i=1 xihi and for s ≥ 1,

ys =

m∑
i=s

xip
(i−s)(n−1) = xs +

m∑
i=s+1

xip
(i−s)(n−1).

From the condition y1 = · · · = ym, we obtain, by induction on s,
that

x1 = x2 = · · · = xm−1 = −(pn−1 − 1)xm.
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We take xm = 1 and get xi = −(pn−1 − 1), 1 ≤ i ≤ m − 1. With
these values, we obtain y1 = y2 = · · · = ym = 1 and y0 = pn−1

p−1 .

Then, we finally obtain a relation among idempotents of Ti, 0 ≤ i ≤
m:

−(pn−1 − 1)

m−1∑
i=1

∑
H∈Ti

piεH +
∑
H∈Tm

pmεH =
((pn − 1

p− 1

)
− 1
)
εIdG

+ pnmεG

= p
(pn−1 − 1

p− 1

)
εIdG

+ pnmεG.

Theorem 2.4 follows from Kani’s Theorem (Theorem 2.1).
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Email address: fausto.jarquin@uacm.edu.mx

DEPARTAMENTO DE CONTROL AUTOMÁTICO, CENTRO DE INVESTIGACIÓN Y DE ES-
TUDIOS AVANZADOS DEL I.P.N.
Email address: mrzedowski@ctrl.cinvestav.mx
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