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ABSTRACT. We apply a result of E. Kani relating genera
and Hasse-Witt invariants of Galois extensions to a family
of abelian p-extensions. Our formulas generalize the case
of elementary abelian p-extensions found by Garcia and
Stichtenoth.

1. Introduction. E. Kani proved in [2] that if L/K is a finite Galois
extension of function fields with Galois group G, then any relation
among idempotents of subgroups of G in Q[G] implies the same rela-
tion among the quotient genera. The quotient genus for a subgroup H
of G is the genus of the field K := L.

In the same paper, Kani proved that if the field of constants £ of K
is a field of positive characteristic p > 0, then any relation among the
subgroups H of G implies the same relation among the Hasse-Witt
invariants of the fields K.

In this paper we consider an arbitrary field k of characteristic p > 0,
a function field K with field of constants k and a Galois extension
L/K with Galois group isomorphic to (Z/ me)n where m and n are
natural numbers. We find two formulas relating the genus g, of L
and the genera of a family of subextensions. The first one, is the
family of all cyclic subextensions of K and the second, the family of
all subextensions E with L/FE cyclic. The same relations hold for the
Hasse-Witt invariants. Our results generalize the formula found by
Garcia and Stichtenoth [1] for elementary abelian p—extensions.

2. The results. Let k be any field of positive characteristic p and let
K be a function field with field of constants k. Let L/K be a Galois
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extension with Galois group isomorphic to G = (Z/p™Z)". Let G be
the set of all subgroups of G. For each H € G, let Ky be the subfield
of L fixed by H, thatis Ky := L. Let gy be the genus of K and let
7H be the Hasse—-Witt invariant of K. For H € G, let ey be the norm
idempotent of H:

€x = ﬁ > heqlal

heH

In [2], E. Kani proved the following result.

Theorem 2.1 (E. Kani). Any relation
ZT’HEH:O with ?"H€@7
HEG
among the norm idempotents yields the following two relations
ZTHQH:O and ZTHTHZO,
Heg Heg

among the genera and among the Hasse-Witt invariants. O

Let H,; be the set of all subgroups of G isomorphic to (Z/p™Z) "o
(Z/p™~"Z), 0 < i < m. The set of the fields fixed by H € H,; is the set
K; of all the subfields K C E C L such that Gal(E/K) = (Z/p'Z), that
is, the collection of all the cyclic extensions of K of degree p* contained
in L. Our main result is

Theorem 2.2. We have the following relations

pnfl -1 m—1
gL = *p(ﬁ)gK - -1) ' JE + Z 9E,
i=1 Eek; Eekm
and
pn—l -1 m—1
TL——p( )TK—(pn_l 1) ZTE+ Z TE
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Corollary 2.3 (Garcia—Stichtenoth [1]). If L/K is an elementary abelian
p—extension of degree p", we have

pnfl_]_
p—1

)9K+ Z JE. O

Eecky

gL = —P(

Now let 7; be the set of cyclic subgroups of G of order p?, 0 < i < m.
Let £; be the set of subextensions K C E C L such that L/E is a cyclic
extension of degree p'. We have £; = {E | E = L with H € T;}.
Then

Theorem 2.4. We have the following relations

n—1 _ 1 m—1

p(%)gL =" — ("' = 1) Z P’ Z gr +p" Z 9E;
p i=1 EeL; E€Ll,,
and
pnfl -1 m—1 )
G i L A A e At VI S U W A W oS
P i—1 Eel; E€Ly,

Remark 2.5. The genera of the subfields considered in Theorem 2.2
can be computed using the results of H. L. Schmid [3].

It is not easy to use Theorem 2.4 in applications since the family of
fields considered is in the top of the extension, so the genera is hard to
find.

3. The proofs. First we consider

(3.1) M= > eg, 0<i<m.
HeH,;

Note that Mo =}y, €1 = €6 = ﬁ Y owec O

Fix an element ¢ € G. Let T(i,0) be the number of distinct
subgroups H € #,; such that o € H. That is,

T(i,0):={{HeM; |0 H}
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Let s be a natural number 1 < s < m and let
Gs:={oceG|o(o) =p°}.

Note that given any element o € G, there exists an element 7 € G of

order p™ such that 7?"° = ¢. If 6 and o are two elements of G, then
there exists an automorphism ® € Aut(G) such that ®(¢) = o. Thus
T(i,0) = T(i,0). Therefore, it makes sense to define

(3.2) T(i,s):=T(i,0),
where ¢ is any element of G.
Let Cs := Y .. 0 € Q[G]. Then
1
M; = — h
D T 2

HeH; heH
m

1 .
= W;T(z,s) Z o

c€eGy

1 m
= — ZT(i, $)Cs.
pnm 7 =

We need to compute T'(3, s) for all 0 < 4, s < m. To this end, let e,
be the number of elements of G of order p*. We have

es=q¢°—q¢° 1, 1<s<m, and ey =1,
where ¢ = p". In particular if h; is the number of distinct cyclic
subgroups of G of order p’, it follows that
¢ — g1
Tl
Since in an abelian group its lattice of subgroups is symmetric, that

is, if B is a subgroup of a finite abelian group A, then A contains a
subgroup isomorphic to A/B, it follows that

h; 1<i<m, and hg=1.

Let H € H; and let L(H,s) = |H N G;|. Since all subgroups in the
collection H; are isomorphic, it makes sense to define

L(i,s) := L(H,s),
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where H is any subgroup in #,.
Let 7 C H; x G, be defined by

F:={(H,0)| o€ H}.

We can compute |F| either column by column or row by row which
gives us:

(3.3) |F| = h;L(i,s) = T(i, s)es,

respectively. That is, to find 7'z, s) it suffices to find L(z, s).

Now fix H € H; and let B, := {x € H | 2" = Idg} = {z €
H | o(z) divides p*}. Then L(i,s) = |Bs| — |Bs—1] for1 < s < m
and L(%,0) = |By| = 1. Now to find B;, note that B, = ker ¥, where
U : H — H,¥(z) =zP". The image of ¥ is H?". Hence

B, = 2]
1= Ty

Since H = (Z/me)nileB(Z/pm*iZ),wehave HP" = (Z/pm*SZ)nil@
A, where

e (Z/pm’i’SZ) iflgsgm—i.
0 ifm—-—i<s<m

Therefore we have
(3.4)
1 ifs=0, 0<i<m,
L(i,s) = { p"=D(p™ — 1) ifl<s<m-—i (0<i<m-—1),
p=D=DHm=i)(pr=1 _ 1) ifm —i4+1<s<m (1<i<m).

From (3.3) and (3.4), we obtain

(3.5)
1 ifi=0, 0<s<m,
T h; ifs=0, 0<i<m,
(i,5) = (E=L)plnnti= if1<s<m—i, (1<i<m-1),
(1’p_*l)p("—2><i—1>+<m—s) ifm—i+1<s<m, (1<i<m).
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Thus, from (3.5), we obtain

; m—1 )
M; = h Tdg + n=DE-Do,
pm prm = p—
i m n—1
p -1 n—2)(i—1 m—s
pnm Z (7)]?( I I+ )CS’
s=m—i+1

forl <i<mand My = ¢g.

Now, in order to obtain a relation among the norm idempotents,
since My = e¢ and Idg = €14, what we need is to find z1, ..., 2z, € Q

such that . .
D @M =yoTda + Y y.Cs,
i=1 s=1
withyo € Qand yy =y2 = -+ =y # 0.

Letxzy,...,z, € Qand

;i 1m—1i
m m i 1 m— (n—=1)(i—1)41
St = (352 10+ (2 N
i=1 i=1 p =1 s=1
Yo
m m (n—2)(i—1)+(m—s)+i
i=1 s=m—i+1
Changing the summation order (Fubini’s Theorem), we obtain
—1lm—s 1 ;
m n_ 1.7 (n—=1)(i—1)+1
> @i = yoldg +(5—) i,
i r—1"= = p
n—1 _ m m (n—2)(i—1)+(m—s)+1
p 1 P
+ (= z; c,
( p—1 )szz:u:mz;sﬂ P
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We have, for1 <s<m —1,

(3.6)
p _ 1 WS ==+ pl—1 m p(n=2 (=) +(m—s)+i
Z L pnm + ( p—1 ) i:st+1 L pnm
and
n—1 _ m (n—2)(t—1)+1
P 1 P
(3.7) Ym = (71 i
p—1 ' P
Consider 1 < s < m — 2. Our goal is to show that x4, ..., z,, can be

chosen so that y, = ys+1. From (3.6) we obtain

(3.8)

m

ns(,n—1
_p(Ppnm—l) D e L A PP

Tm—s =
1=m—s+1

Similarly, for s = m — 1, we obtain from y,,,—1 = ym, (3.6) and (3.7)
(39) 1= 71 1 _ Zp(n 1)(i— 2)

Taking s = 1in (3.8), we obtain
(310) Tm—-1 = 7(pn71 - 1)Im-

From (3.10), taking s = 2 in (3.8), we obtain x,,—2 = —(p" ! — 1)zyy,.
By induction we obtain

(3.11) Ty=- =y 1 =—(p" "' = Dy,

Finally, from (3.11) and (3.9) we get z; = —(p" ™! — 1)z,

We let z,,, = 1 and obtain z; = —(p"~! —1) for 1 <i < m — 1. Then,
from (3.6) and (3.7) we have

(p”71 ~1, 1

Yi="""=Ym = p—l )pnm—l'
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Therefore
m—1 m—1
- Z Z (p" ' — ey + Z em=—(p"t-1) Z M; + M,,
i=i HeM; HeHm i=1
B 1 pn—l -1 m
_yOIdG+pnm71( =1 );Cs
1 pn—l —1 nm
= 20€1dg T prm—1 ( 1 )p €G
pn—l _
(3.12) = 20106 +P(——)ee,

n—1 i
—1 1 : m .
where zg = yo — (2 — )W' Since yo = >_i%, prwwsh; with z; as

in (3.10) and (3.11) with x,,, = 1, we obtain zy = 1.

Theorem 2.2 is now a consequence of Theorem 2.1 and (3.12).
To prove Theorem 2.4, we consider now 7;, 0 < ¢ < m. We have

|7;| = hz Let
Qi = Z €.

HeT;

Consider an element o € G,. Let N(i,0) be the number of cyclic
subgroups of G of order p’ containing o. Since for any two elements
of G, there exists an automorphism of G sending one into the other,
as in (3.2), it makes sense to define

N(i,s) := N(i,0),

where ¢ is any element of G.

Then
1
(3.13) Q==Y > o

p HeT, 0€eH
1 m

= —Z.ZN(Z',S) Z o
p s=0 c€Gy
1 m

= — N i,S Cs-
A (i, )

s=0
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First we compute N(m,s). Let {r,...,7,} be a basis of G over
Z/p™Z. More precisely, G = (11,...,,) and o(7;) = p™ for1 < j <mn.
Let p € G, say p = 71t ---79". Then o(p) = p™ if and only if there
exists 1 < j < n such that ged(e;, p) = 1. Fix an element ¢ of G with
s > 1. We can choose the basis {71, ...,7,} of G such that 77" =o¢.

m__ _m—1

We have h,, = W. The different h,, cyclic subgroups of G of
order p™ are
(r7d2 o), 0<ay; <pm—1, 2<j<n,

(TP g2y 0<a; <p™'—=1 and 0<a;<p™ -1, 3<j<nm,

poug— ak n -1 .
({7 ), 0< o <p™ T =1, 1<j<k—1

and 0<o; <p™ -1, k+1<j<n,

(rPghez Pty 0<a; <p™ -1, 1<j<n-—1

n

Note that o does not belong to any subgroup of the form

pay,_pa2 pag—1 Ok+1 Qn
(ry g2 Y ThThe1 = Tn ), k>2

since s > 1. Otherwise we would have

_ p™"T% _ (_pai_pas pak—1 apq1 an\B
g = 7’1 = (7'1 7'2 o Tk‘fl 7'ka+1 “e Tnn)
for some 0 < 8 < p™ — 1. Since {71, ..., 7, } is a basis of G, we would

have that p™ | 3, thatis 8 = 0 which is impossible since o # Idg.

Similarly, we have o € (ry752 - - - 79") if and only if «; = p°l; with
0<; <p"*—-1,2<j <n Fors =0wehave ¢ = Idg and
N(m,0) = hp,.

Therefore, we have

(3.14) N(m,s) =

Now let 0 < i < m. If i < s, then |H| = p' < p* = o(0) so that
o ¢ H. Thus N(i,s) = 0if i < s. Now let s < 4. If s = 0 then
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N(i,0) = h;, since 0 = Idg. Next, we consider s > 1. Let 1 < ¢t <m
and ¢;: G — G, ¢(z) = 2?'. Thenker¢, = {z € G | ' = 1} =
{z € G | o(z) divides p'} and the image of ¢ is GP'. In particular
if t = ¢, then any H € 7, satisfies H C ker ¢;. It is easy to see that
ker ¢; = Gr"T (Z/ piZ>n. Therefore, from the case i = m, we have

N(i,s) = pt==)»=1 for s # 0 and N(i,0) = h;. From (3.14) we get

hi, s=0, 0<i<m,
(3.15) N(i,s) = { pli=o)n=1) 1 <s<i<m,
0, 0<i<s<m.

From (3.13) and (3.15) we obtain

1 < 1 Lo ,
Qi=—> N(i,s)Cs = —h;ldg+ Y _pli=2=1=ic,,
P = D’

s=1

Equivalently, we have

(3.16) p'Qi=hildg+) pt~"" V0, 0<i<m, Qo=1ldg.

s=1

Let z1,...,2, € Qbesuch that >1" | 2;p'Q; = yoldg + > it ysCs

withyp € Qand y3 = y2 = -+ = ym # 0. Then, from (3.16), we have
m m m 1 )
> wp'Qi = (Z JJihi) Idg+ Y Y aipt=90 N,
i=1 i=1 i=1 s=1
=yoldg+» > apl ™I DC = yolde + Y usC,
s=1 i=s s=1

where yo = ", x;h; and for s > 1,
ys = inp(ifs)(nfl) =, + Z 2pli=9) (1)
i=s i=s+1

From the condition y; = --- = y,,,, we obtain, by induction on s,
that

T1=ap = =Tp_1=—(p" " — D).
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We take z,,, = land getz; = —(p" ' —1),1 < i < m — 1. With
no1
pp71
Then, we finally obtain a relation among idempotents of 7;, 0 < ¢ <
m:

these values, we obtainy; = yo = --- = y,, = land yy =

m—1

. -1
_(pn—l _ 1) Z Z pZCH + Z meH = ((p 1 ) - 1)€Idc +pnm€G
i=1 HeT; HeTm P
n—1 —1
:p(%)% +p"e

Theorem 2.4 follows from Kani’s Theorem (Theorem 2.1).
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